
Hardware Profiling of Kernels
Andrew McRae – Megadata Pty Ltd.

ABSTRACT
Or: How to look under the Hood while the Engine is Running.

This paper describes a method of accurately measuring and profiling kernel code in real
time with cheap and readily available hardware. Other profiling methods are touched upon,
and why these methods were rejected. Some goals are stated, and a proposed
hardware/software solution is described. In a case study, a 386BSD kernel is evaluated, and
the results of this exercise are presented, demonstrating how tracing of software in real time
highlights optimal or non-optimal code paths. The solution also provides for effective and
flexible kernel debugging.

Warning to software people: this paper contains some descriptions of hardware.

Introduction

Michael Jackson has made some pertinent
remarks about optimisation.

Jackson’s First Rule of Optimisation:
Don’t do it.

Jackson’s Second Rule of Optimisation (for very
experienced programmers):

Think about it, then don’t do it.

This expresses a well founded caution, often
ignored by the naive, who would do well to learn an
important lesson:

Make it right before you make it fast.

Even so, much effort goes into making pro-
grams as fast as possible, leading to a plethora of
optimising pre-processors, compilers, assemblers etc.
However, with a poor design, the best optimising
compilers are usually of little benefit. Experience
has shown that if a piece of software is not perform-
ing, reviewing the design is the best, and sometimes
only, way of obtaining significant improvement.
Sometimes performance is not a major goal of
software; other issues such as maintainability,
correctness under all conditions, and robustness are
more important. Other times it is important that a
piece of software not only runs correctly, but runs
fast as well. The ideal is to have the best design, and
then apply optimisation so that the implementation
can perform well.

It is a common mistake to expend effort
optimising code that intuitively seems to be slow,
but contributes only a small portion to the overall
total, and not optimising where most of the time is
spent. This is oft referred to as the 10/90 rule, where
if a piece of software was improved in speed by
10%, and that software contributed only 10% of the
running cost, an overall gain of only 1% is obtained;
if the 10% improvement were applied to software
that was 90% of the running cost, then a 9% overall
gain is gained.

The key to optimisation is to understand where
or how it is applied (or whether it should be applied
at all), and therefore the Golden Rule of Optimisa-
tion is:

Measure BEFORE you optimise.

Optimisation in UNIX

UNIX has a number of tools to help in this area;
compiler profiling allows time based and function
entry/exit profiling to be incorporated into programs,
which allow operating statistics to be extracted and
analysed. Generally this is sufficient for most pro-
grams, as the programs are not usually interacting
with, or affected by, real world events. Simulators
also have been used to good effect by providing a
higher degree of granularity to profiling, allowing
tracing of code paths etc.

Kernel Profiling

Kernels are a special case in that they must
interface to real world entities, such as devices, net-
works, memories, clocks etc. Subtle and complex
interactions occur between device drivers, processes
and external events, as anyone who has attempted to
remedy bugs caused by these interactions will appre-
ciate. It is likewise difficult to obtain hard data to
guide kernel optimisation, mainly due to the
difficulty in obtaining fine-grained kernel perfor-
mance measurements.

Kernel measurement has been considered a
Black Art in the past. A number of techniques have
been devised that allow various degrees of accuracy.
Virtually all kernels keep event statistics and
counters that allow a rough idea of the overall per-
formance; these counters can be reset or logged at
specific intervals to give a broad understanding of
system activity. Examples include paging rates, net-
work packet inputs/outputs, disc block transfers etc.
The main drawback to relying on event statistics is
the poor granularity and lack of detail concerning
where the kernel time is spent. Keeping a large

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 375



Hardware Profiling of Kernels McRae

number of statistics also takes up memory, and
sometimes requires a not insignificant amount of
CPU time to update them.

A more common approach is to measure the
overall system performance by using an external
benchmark package, or by timing the throughput or
response time of the kernel by running specialist
programs, e.g., ttcp (networking), iozone (file sys-
tem) etc. Others run a sample of the intended appli-
cations so that a true idea is obtained of the system
performance in that environment. Whilst these are
the ultimate in kernel measurement (by definition),
they do not aid in discovering where optimisation
should be employed, except perhaps in a general
sense (‘the network code needs to be faster...’. ‘But
where in the network code?’).

Some areas of kernels can be measured in the
same way as user programs, using function counting
and gross clock profiling. If a psuedo-random or
skewed clock is available, then it is possible to
improve the clock profiling so that other clock-
related activity is not missed. These measurements
are useful but suffer from a trade-off in granularity
and accuracy; the finer the granularity, the more time
is spent running the profiling clock and not actually
running the kernel, which may perturb the kernel’s
activity. The coarser the granularity, the less effect
on the kernel activity, but then the resolution
becomes too low to perform useful measurement.
Memory also has to be reserved to store the profiling
clock data, and having clock profiling running often
may cause instruction and data cacheing to be
adversely affected (though with larger caches becom-
ing more common this may not be significant).

But what happens if one wishes to profile the
clock interrupt code itself? What happens if you
wish to measure the time taken to process character
input interrupts, or discover the optimal code path
taken for processing back-to-back packets through a
certain protocol stack, checking the time to reply
with acknowledgements?

The fly in the ointment is that kernel profiling
is like the Heisenberg Uncertainty Principle i.e the
more accurate your measurements, the more you are
perturbing the environment in which the kernel is
running, and the less likelihood of getting data
which reflects the actual state of the unprofiled ker-
nel.

Other methods are available which are non-
intrusive, such as connecting large amounts of
hardware to record the instruction stream; this is
expensive and requires specialised hardware, nor-
mally out of the league of the casual kernel hacker.
Another problem with this method is that it often
does not cope with cache effects; instruction caches
must be turned off, thus ruining the non-intrusive
nature of the measurement. Microprocessor designers
are becoming aware of the need to measure and

trace processor activity even when running in cache,
and newer designs often have pins dedicated to pro-
viding indication of the state of the processor.

So we are faced with a dilemma; in order to
rationally test kernel designs and code, we need
accurate measurements, but in obtaining these meas-
urements we change the environment of the kernel,
and possibly introduce erroneous measurands (and
consequently make wrong design decisions). Any
kernel profiling system must be as non-intrusive as
possible, or at least keep the effect of measurement
to a minimum so that it does not grossly alter the
timing characteristics.

The Goals

As a result of much software written in an
embedded environment, a great deal of it driver and
kernel related, I became increasingly interested in
being able to easily measure and profile the
software, and so make rational and informed judge-
ments concerning algorithms and coding techniques.
Faced with the regular need to discover why things
were not responding at the expected speed, it quickly
became clear that the human brain is not a good
enough simulator to handle the complex timing
interactions occurring within a kernel. Some early
solutions to the problem was to use statistic
counters, but this was usually too gross a measure-
ment to help. Another favourite method was to
press-gang a hardware engineer to connect an oscil-
loscope to the equipment; this allowed external
responses to be measured, and certainly helped when
hardware drivers were being tested.

Sophisticated tools such as logic analysers pro-
vided a major benefit, as whole sequences of events
could be trapped and examined in the cold light of
day. More intelligent software within the analysers
allowed instruction disassembly, which made easier
work of following code paths, but this was generally
tedious and unfriendly because of the difficulty in
relating the raw instruction stream back to the source
code. It also is not trivial to connect and operate a
logic analyser for most software engineers. Special
logic analyser software can be used to perform time
based profiling, but the sampling granularity was
generally too coarse to be of any use, and since it
operated on physical addresses, this was difficult to
relate back to the actual software.

In-circuit Emulators generally are considered
the top of the heap for embedded development, and
come with complete suites of cross-compilers,
assemblers, remote debuggers and hardware which
allows all manner of tracing and measuring pro-
grams. They also come with Rolls Royce price tags.
Unfortunately they tend to be black boxes when it
comes to analysing the data; it is often difficult to
extract the desired information from the raw timing
data, and then integrate the information with the
source code.

376 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



McRae Hardware Profiling of Kernels

I still had a desire to find out what was really
happening inside these kernels, but I had a limited
budget. I wanted to do the equivalent of what our
local car mechanic does, to open the hood, listen to
the engine running, judge the revolutions, feel the
temperature, and so forth.

By now I had attempted several methods of
getting the data, with limited success, but in the
meantime I had formulated a wish list to describe
what I wanted.

A
D
D
R
E
S
S

Microsecond
Clock

Trigger

RAM Bank

Event

Figure 1: Profiler block diagram

Fine granularity of measurement, so that accu-
rate profiling may be obtained.
Little or no intrusiveness, so that performing
the measurement will not affect the timing of
the kernel.
Integration with development tools or program
source so that source level code paths may be
traced with ease.
Profiling to occur for all kernel operations
within a selected interval, including clock
interrupts, device interrupts, even sections
when processor interrupts were locked out.
If some hardware assists were to be
employed, then some easy and portable
method of connection should be used, e.g., not
having to connect 96 separate clips to a PCB.
Immune to instruction cache effects. In fact it
should still work as expected with instruction
cacheing enabled (as any ‘production’ code
would run the cache enabled).
Granularity to a source code function level
(however short the function is) should be the
worst case; however it would be desirable to
profile within functions if possible.
Any method of profiling should be portable
between different computer architectures.

It became clear that it is impossible to fulfill
these goals with software alone. It is also clear that
complex hardware did not offer an elegant (or
cheap) alternative. This paper describes a solution
to this problem which is a better alternative to
software only kernel profiling, and much cheaper
than specialised and complex ICE hardware meas-
urements of kernel operation. Cheap enough that
any person who wished to profile and debug their
home PC would be able to put it together, but useful
enough so that design decisions could be made in
confidence as a result of accurate measurement. It
attempts to meet the above goals, and also be simple
and cheap enough to build without great effort (even
a software engineer could probably manage it).

The Profiler

Three basic elements are used in the profiling
system proposed; the first is a hardware device that
is used to record time and event data into a RAM
block. The second is a modified C compiler that
allows event triggering code to be inserted into key
locations, and finally the last building block is
analysis software that is used to decode the back-
trace of events and relate it to the source code.

The Hardware

The role of the hardware in the Profiler is very
simple. Its job is to store timing information and
some identification value. It is purposely as simple
as possible, primarily because it was a first attempt
at exploring what the basic hardware requirements
were for meeting the goals. A lesser goal was cost
minimisation; as long as the cost could be held to
something below one or two hundred dollars than the
Profiler could be built by just about anybody.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 377



Hardware Profiling of Kernels McRae

Finally the Profiler is simple because I hate wire
wrapping; it’s so much more tedious than writing
software.

Commonly available components were used,
and the hardware prototyped on a breadboard using
wire wrapping. A single electrically erasable PAL is
used for the logic and timing functions; the final cost
of the parts totaled less than $100 dollars. It has a
chip count of 5 static RAMs, 5 counters, 1 PAL, 1
oscillator and 1 delay line. Having an EE PAL
turned out to be a great boon, as it meant quite a bit
of experimenting could take place to get the logic
right, and also meant that moving to equipment that
used different methods of accessing the Profiler
could be handled by different PAL equations. It also
allowed extra facilities to be incorporated such as
some display LEDs and control switches.

A block diagram appears in Figure 1. The
Profiler consists of a block of RAM which is 40 bits
wide, an incrementing address counter, a free run-
ning counter clocking at 1 Megahertz, and some con-
trol logic. The RAM is split into two sections, one
holding an identification code (event tag) which is
16 bits in width, and the other 24 bit wide section
connected to the microsecond clock. When an event
tag is presented to the Profiler, it stores this code
along with the microsecond counter value into RAM.
The RAM address is automatically incremented
every time an event is stored, essentially storing the
event and time in a large list. The list is currently
16384 events long, but there is no inherent limit to
the total number of events stored except the max-
imum amount of memory designed into the Profiler.

The microsecond timer is 24 bits long, allowing
a maximum time of 16 seconds between events
before the time is wrapped around and information is
lost. Note that this is the maximum time between
events, not the total time that can be profiled - the
analysis software only uses the timer value as an
interval time, not as an absolute time. The event tag
is 16 bits, allowing 65536 unique event tags.

The trick in this scheme is not the gathering or
storing of the event/time data (a Simple Matter Of
Hardware), but how to generate the event code,
which must come from the equipment being meas-
ured. It was clear that some software assist was
required to generate these event tags in an orderly
fashion. Another problem was how to connect the
Profiler to a working system.

An elegant solution presented itself when I
realised that most of the computing equipment that
the Profiler was designed for has one or more
EPROM sockets fitted for boot code or board
drivers. This presented itself as a simple method of
connecting the Profiler to the equipment, by piggy-
backing a EPROM socket onto some cable, and
using the socket to bring the appropriate signals into
the Profiler. The original boot EPROM would plug

into the piggy-back socket, if indeed it was required.
The event trigger would be the access of the
EPROM, and the address of the EPROM access
could be the event tag data.

In this case, only 18 signal lines needed to be
brought into the Profiler (16 address lines and the
EPROM ChipEnable and OutputEnable signals).
This allowed a simple and easy method for the
Profiler to connect to any piece of equipment that
contained a standard EPROM socket, without other
connections. Power is obtained from the EPROM
socket, so the Profiler is self contained.

A switch exists on the Profiler that initiates the
profiling recording; this allows the Profiler to be syn-
chronised with execution of test programs, network
activity etc. Two LEDs exists in the card giving
some indication of its state; the first indicates that
the Profiler is active and storing data, the second
indicates that the address counter has overflowed and
the Profiler has automatically ceased storing data.

The profiling scenario is now clear; simple
software triggers are sprinkled in strategic locations
throughout the target software. Each time one of the
triggers is executed the time and trigger value is
recorded. How does the data then get retrieved? The
data RAMs are mounted via battery-backed Smart-

and when the profiling samples are
stored, the timing data is retrieved by transferring
the RAMs into another networked embedded host,
and copying the profile data to a UNIX host for pro-
cessing.

And so I had a workable hardware/software
scheme that could record with accuracy specific
events occurring, was easy to connect to a piece of
equipment, didn’t require a lot of signal hooks, and
the software trigger was minimal enough not to
intrude very much in the timing of the kernel.

Generating the Triggers

The next problem was how to manage the
event triggers i.e how to automatically generate them
in the target code, and how to generate the event
value so that it could relate back to functions and
points within functions.

It seemed natural to place a trigger at the entry
and exit of each function; in this manner code paths
could be traced, and accumulated times calculated
for each subroutine. It isn’t really practicable to
modify the source code to explicitly add the triggers;
this would mean that a macro would have to be used
so that the profiling could be turned off, and it
would also mean manual allocation of a trigger
value to each function, something that is tedious and
error prone. Besides, many functions have multiple
exit points, and often functions contain some initiali-
sation as part of their local variable declarations
which would be performed before the trigger; this
would give skewed timing results.

378 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



McRae Hardware Profiling of Kernels

So it was decided to modify the compiler to
add the trigger points; the Free Software
Foundation’s GNU C compiler was modified to gen-
erate the triggers at the start and end of every func-
tion. For ease of processing and identification, each
function is assigned a trigger value that is an even
number, and that number + 1 is used as the function
exit trigger. On a 68000 system, this effectively
added one instruction in the function prologue, and
one instruction in the function epilogue, e.g., a func-
tion would now contain:

Kernel text,
data and BSS

Fixed number
of pages

Remapped
I/O memory

Physical AddressVirtual Address

FE000000 100000

A0000

FFFFF

Figure 2: Virtual memory remapping

.globl _myfunction
_myfunction:

tstb 1386
link a6,#-8

...
unlk a6
tstb 1387
rts

If a higher granularity of profiling is required
with a function, then a macro may be used to gen-
erate an inline trigger via a compiler asm function.
Assembler routines may have event tag trigger
instructions added via an include file and a prepro-
cessor macro.

The trigger value is taken from a file containing
the function names and values, of which a sample is
shown below:

main/502
hardclock/510
gatherstats/512
softclock/514
timeout/516
untimeout/518
swtch/600!
MGET/1002=

The insertion of Profiler event tag instructions
is enabled by a compiler option indicating the name

of the file containing the functions names and event
tag values. This file is automatically extended by
the compiler when it generates new event tags for
functions that do not already exist in the file; the
event tag for the added functions is taken as the next
available value (i.e the next value higher than the
current highest in the file). The name/event tag file
may be generated from scratch, with an initial
dummy entry indicating the starting tag number to
use. Once generated, the same profile tags are used
to allow recompilation without having different
profile tags assigned to a function. Multiple name/tag
files may exist, and may be concatenated to provide
a complete list of profiled functions. Inline and
assembler trigger names and values may be manu-
ally added to the file.

Special character modifiers may be appended to
any of the name/tag values that indicate special pro-
cessing of this particular tag when analysing the
results; a ‘!’ character indicates a function that
causes a processor context switch, which the analys-
ing software must treat specially. The ‘=’ modifier
indicates an inline tag, as opposed to a tag represent-
ing the entry or exit of a function.

Adding event tag triggers to software will have
a small impact on performance; this has been calcu-
lated at around 1 to 1.2% extra CPU cycles, which is
a small penalty to pay for profiling. In absolute
terms this equates to about 400 nanoseconds per
function for a 40 MHz 386. The size of the
software also increases by the overhead of two
instructions per function; it is hard to quantify this
increase as a percentage as it depends on the number
and size of each function, and also on the number of
inline triggers used.

Connecting to a PC

The initial platform for testing was a 68020
board designed for embedded applications. Since it
was of Megadata design and manufacture, it was

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 379



Hardware Profiling of Kernels McRae

easy and safe to develop and test the Profiler
hardware on this platform.

Once the concept was tried and proven, it was
decided to connect the Profiler to a real kernel,
namely the freely available 386BSD release 0.1 run-
ning on a 40 Megahertz 386 PC with 8 Megabytes
of memory. Since the point of interface was a com-
mon JEDEC EPROM socket, it was simple to con-
nect the Profiler to the PC via a spare EPROM
socket on a Western Digital WD8003E Ethernet con-
troller. Any ROM socket could have been used as
long as it was at a known fixed address and was
accessed as a 8 bit wide device, such a VGA BIOS
ROM socket etc. The address space of the ROM
falls somewhere in the ISA bus memory address
space, between (hex) A0000 and 100000.

Changes were made to the 386BSD C compiler
(based on gcc 1.39) to accommodate the Profiler
event tag additions. A snag was hit when it was real-
ised that the 386BSD kernel remapped the kernel’s
view of ISA bus memory into kernel virtual address
space, and so an absolute address could not be easily
used.

After initial loading, the 386BSD kernel remaps
the physical memory addressing to new virtual loca-
tions as shown in Figure 2.

In effect, the kernel is remapped to absolute
location FE000000; the last location of the kernel is
rounded to a page boundary, and a fixed number of
pages are allocated for the kernel stack, a proto u-
dot area and other virtual memory requirements. The
ISA memory address space is then remapped to fol-
low this kernel address space; the virtual address
that this memory is mapped at may vary depending
on the size of the kernel.

The Profiler event tag instructions added by the
compiler require an absolute address within the
EPROM address range starting at a fixed EPROM
location somewhere in the ISA bus memory address
space. But since this EPROM location may vary
depending on the kernel size, it cannot be resolved
at compile time. It would be unreasonable to have
to recompile all source code modules just to update
the event tag instructions. Fortunately it can be
resolved at link time with a little extra effort; the
compiler modifications generate function entry and
exit event tag instructions thus:

.globl _myfunction
_myfunction:

movb _ProfileBase+1386,%al
pushl %ebp
movl %esp,%ebp
subl $8,%esp
...
leave
movb _ProfileBase+1387,%cl
ret

The global label _ProfileBase is set in an
assembler file as a result of a two stage kernel link-
ing process. The kernel is first linked with a dummy
of _ProfileBase, then a shell script is automatically
used to extract the size from the kernel and recom-
pile the assembler file with the real value of
_ProfileBase, which is then linked with the kernel. If
the physical address of the Profiler EPROM location
is changed, then only this assembler file has to be
modified to cater for the new position of the
EPROM. This scheme worked very well in providing
a correct run time virtual address of the Profiler’s
physical memory address.

Profiling the Kernel

A total of 16384 event tags and time values
may be stored in the Profiler before the RAM
addressing overflows. Whilst this allows a consider-
able amount of data to be gathered, if a particular
subsection of the kernel was to be examined in finer
detail, then some form of selective profiling should
take place. This is easy to set up, as all that needed
to take place was to compile those modules of
interest with profiling enabled, and to compile the
rest of the kernel without profiling. This allowed
highly selective profiling to take place without losing
resolution, but without filling the Profiler RAM with
events in which there was no interest.

This selective profiling allowed two broad
categories of profiling to take place, macro-profiling
and micro-profiling. Macro-profiling takes place
when certain key modules such as the system call
handlers and VNODE interface routines are profiled.
Virtually all kernel code paths traverse these higher
level routines, so it is possible to get a broad-brush
view of system performance to answer questions
like, "How long does it take to fork/exec a process?"
Or "How long does it take to read this file?" Or
"How long does it take to open a TCP connection?"
This view of the kernel is very instructive as the
overall code path through the kernel can be easily
seen and traced, and can give a guide to where
further profiling should take place.

Micro-profiling takes place when a particular
subset of the kernel is examined in detail. Interrupt
handlers, clock routines, assembler subroutines can
be profiled as well, allowing complete snapshots to
be taken of a particular kernel code path. For exam-
ple, the file system buffer cache, file system code
and disk driver routines can be profiled, so that
whenever the kernel enters these areas, the code path
is traced. No other code paths are profiled, allowing
a detailed and unobstructed view of that section.
Similar subgroupings may be made with the net-
working code, the Network File System (NFS) code,
the virtual memory subsystem, various drivers
(SCSI, tty, IDE) etc.

After repeated micro-profiling of the various
kernel subsystems, it is possible to eventually

380 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



McRae Hardware Profiling of Kernels

construct a highly detailed and accurate mosaic of
the kernel performance. As a result, quantitative
comparison may guide design and implementation
improvements as performance bottlenecks are
highlighted in the kernel, and accurate before and
after measurements may be made to test the success
of such changes.

Elapsed time = 0 sec 497272 us (28060 tags)
Accumulated run time = 0 sec 492248 us (98.99%)
Idle time = 0 sec 5024 us ( 1.01%)
-----------------------------------------------
Elapsed Net # calls (max/avg/min) % real % net
166218 165343 889 (1089/185/2) 33.25% 33.59% bcopy
152382 151700 514 (901/295/23) 30.51% 30.82% in_cksum
26359 26359 2474 (13/10/8) 5.30% 5.35% splnet
442031 16391 166 (125/98/87) 3.30% 3.33% soreceive
9963 9913 2782 (19/3/3) 1.99% 2.01% splx
16069 9855 433 (36/22/18) 1.98% 2.00% malloc
202651 9132 86 (193/106/28) 1.84% 1.86% werint
183830 7989 170 (98/46/18) 1.61% 1.62% weget
13646 7576 423 (23/17/15) 1.52% 1.54% free
19467 7189 218 (78/32/12) 1.45% 1.46% westart
...

Figure 3: Summary of profiling data

Analysing the data

Once the triggers are generated in the object
code, and the Profiler has captured some events, the
raw data is then uploaded to a UNIX host. The data is
processed by matching the event data (with the
microsecond time values) with the function names as
listed in the name file. The raw data appears as a list
of event tags and times. How then is the data pro-
cessed to gain the maximum useful information out
of it?

Identification of function entry and exit points
allow a code path trace to be constructed with tim-
ing information at each call and return point. Sub-
routine depth is easily discovered by matching exits
with entries, with event tags between a function’s
entry and exit indicating subroutine calls within that
function.

This works well when used when the control
flow follows a simple subroutine call/return model,
but when the target being profiled is a kernel this
model is inadequate to describe the thread of control.
The essential difference is that the kernel is multi-
plexing many processes, and context switches occur
to change the control flow to a different process.
This appears in the profiling data as a discontinuous
change in the subroutine call/return model, where it
appears a different subroutine is being exited than
was called. Some extra information must be given to
the analysing software to indicate where context
switches may occur.

386BSD context switches occur in the swtch()
function; upon entry to swtch the current process
context is saved, and the run queue is checked for
the next process to run. If none are ready, then an
idle loop is entered.

The analysis software must detect when swtch
is entered so that each process’s code path may be
analysed separately. The swtch function is tagged in
the name file with a modifier to indicate this special
processing. The time between the exit of a call to
swtch and the entry to the next call of swtch is
analysed as a contiguous block of processor activity.
The time in swtch itself is counted as CPU idle time,
except when device interrupts occur. The separation
of idle and active CPU time provides accurate calcu-
lation of CPU usage, both as a overall ratio and on a
per function basis.

Currently two different analyses can be gen-
erated; the first is a summary of each function’s
statistics, sorted by highest to lowest net CPU usage,
headed by an overall summary of the profiling data,
see Figure 3.

The elapsed time for each function is the accu-
mulated interval time recorded between the function
entry and exit. The net time is the accumulated time
minus the accumulated time of all subroutines that
are called from this function, giving an overall time
for this function alone. The count of calls to each
function is calculated, as well as the maximum,
minimum and average time spent in each function.
The net time is expressed as a percentage of the
absolute elapsed time for the entire run (% real), and
also as a percentage of the total time the processor
was not sitting in the idle loop (% net).

These statistics give accurate and concise sum-
maries of the processor activity, and can quickly
highlight bottlenecks or subroutines that are heavily
used. As can be seen in the example, it is obvious

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 381



Hardware Profiling of Kernels McRae

immediately that the CPU is completely saturated,
and most of its time is spent in bcopy.

The second report shows a real time code path
trace, along with accumulated and separate function
timings. Subroutines are shown as nested where
necessary to allow easy following of the code path; a
sample is shown below in Figure 4.

Accumulated and net elapsed times are shown
for each function, e.g., the tcp_input function takes
318 microseconds total elapsed time, but only 92
microseconds was actually spent in the tcp_input
routine; the other 226 microseconds were spent in
subroutines called from within tcp_input. Inline
triggers are marked using ‘==’. Modifiers in the
names file allow detection of context switches,
which are flagged in the code path trace.

0:002 671 -> ISAINTR (31 us, 778 total)
0:002 679 -> weintr (50 us, 292 total)
0:002 704 -> werint (70 us, 215 total)
0:002 739 -> weread (11 us, 145 total)

...
0:003 458 -> bcopy (1073 us)

...
0:004 996 -> ipintr (55 us, 424 total)
0:004 998 -> splnet (10 us)
0:005 012 -> splx (4 us)
0:005 031 -> in_cksum (23 us)
0:005 074 -> tcp_input (92 us, 318 total)
0:005 082 -> in_cksum (38 us)
0:005 138 -> in_pcblookup (9 us)

...
0:005 424 -> spl0 (21 us)
0:005 449 <-

---- Context switch in ----
0:005 488 <- swtch
0:005 492 -> splx (3 us)
0:005 513 <- tsleep (22 us, 25 total)
0:005 520 -> falloc (22 us, 83 total)
0:005 523 -> fdalloc (13 us, 18 total)
0:005 528 -> min (5 us)
0:005 541 <-
0:005 547 -> malloc (29 us, 43 total)

...

Figure 4: Code path traces

From the function summary report bcopy is a
likely target for more investigation; each invocation
of bcopy can be examined by looking at the code
path trace, and some idea can be obtained why this
function is causing high CPU usage.

Much of the effort going into the Profiler now
centres upon processing the raw data in many more
useful ways, such as graphically representing the
code path or building histograms of the function
time and usage for easy detection of bottlenecks.

User Code Profiling

The hardware profiling solution can be readily
adopted to user level profiling with similar results. A
driver stub may be configured in the kernel that
reserves the Profiler’s physical memory address
space; a modified profiling crt.o initialises the pro-
cess for profiling by opening the driver and calling
mmap to memory map the Profiler’s address space
into a fixed location within the process address
space.

There is no reason why a mixture of kernel and
user level profiling cannot take place concurrently,
or profiling several user processes at the same time
to closely monitor and analyse interactions occurring
via the interprocess communications facilities. This
approach is especially applicable in debugging and
tuning communication protocol stacks, where the
network and link layers are implemented in the ker-
nel, and the transport layer and higher layers are
implemented in user libraries and application code.

Case Studies

The first platform that the profiler was tried on
was a 68020 based embedded system running a
Megadata kernel incorporating the 4.3 BSD Tahoe
release networking code. A number of profiling

382 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



McRae Hardware Profiling of Kernels

studies helped greatly in identifying key performance
problem areas in the kernel, and in one case the
recoding of an Ethernet driver doubled the network
throughput.

A SNMP client based on the CMU SNMP code
was profiled, highlighting a major bottleneck in
searching the MIB table linearly; redesigning the
data structure to use a B-tree to hold the MIB data
reduced the CPU cycles required to respond to
SNMP requests by an order of magnitude.

Since the embedded system contained no
memory management hardware, no user/kernel boun-
dary existed except as an artifice of the system inter-
face, thus it was easy to trace activity right from
application level code down to the kernel code
through to driver code.

The next step was to begin profiling the
386BSD kernel, which provided much more
comprehensive and interesting results. These results
are presented in several sections, the first being an
overall impression of performance, and the other
sections taking one kernel subsystem and describing
the results of profiling each one in turn.

386BSD Overall Performance

The profiled kernel contains 1392 functions, so
2784 event tag trigger points were automatically
added to the code. 35 assembler routines had trigger
points added, so a total of 1427 possible functions
could be profiled. Depending on the nature of kernel
activity, the Profiler RAM could be filled (a total of
16384 events) in as short a time as 300 milliseconds.
No noticeable difference can be detected between a
profiled and a non-profiled kernel. After profiling a
number of the key areas of the kernel, some impres-
sions emerged concerning the kernel performance.
These fall into three main categories; CPU perfor-
mance, I/O performance and virtual memory
management.

Firstly, I was pleasantly surprised to note the
oft maligned Intel architecture did indeed run fast,
especially at a clock speed at 40 Megahertz and
employing 64 KB of external cache. Moving data
through the kernel to user space was faster than
expected, and it was clear that function call and
return was also speedy. It would be instructive to
profile other microprocessor types running at a simi-
lar speed using the same software to do a side-by-
side comparison. Undoubtedly memory speed and
cache effects have a major impact on performance,
as data throughput dropped markedly whenever
memory was accessed on the ISA bus as opposed to
main memory. More on this later. Profiling the
interrupt code showed that the regular clock tick
interrupt took on average 94 microseconds to exe-
cute; unfortunately the hardware architecture does
not provide for Asynchronous System Traps (com-
monly known as software interrupts), so the interrupt

code has to work extra hard to emulate this facility.
The interrupt code overhead to do this is around 24
microseconds per interrupt; it is hard to judge
whether this has a significant impact on system per-
formance.

Due to the interrupt architecture of the bus and
the processor, it was evident that more time was
spent ensuring correct synchronisation and interrupt
lockouts than would normally be required on a
multi-priority interrupt level processor such as
680x0; on the average it took 11 microseconds per
splnet call, which may not seem a long time, but the
spl* routines get called a great deal, and it all adds
up to a significant amount. In one test, 9% of the
total CPU time was spent in splnet, splx, splhigh and
spl0. Unfortunately it is hard to see how this could
be improved, given the nature of the interrupt archi-
tecture.

Some sample functions are shown in Table 1,
along with their measured average execution times
(the times are inclusive of subroutines that are
called).

Function Microseconds
vm_fault 410

kmem_alloc 801
malloc 37

free 32
splnet 11
spl0 25

copyinstr 170

Table 1: Sample function timings

When some tests were performed where
input/output activity was heavy, it was clear that a
major bottleneck in system performance is the use of
the ISA bus. This was especially noticeable on the
Ethernet adaptor, which is a 8 bit wide controller.
To transfer similar amounts of data, the ISA bus is
up to 20 times slower than main memory transfers.

It would be instructive to profile different con-
troller cards to determine where each performed
best; when support for EISA cards is available it
would be interesting to see what performance gain
would be obtained using the higher bandwidth bus.

Whilst the CPU performs reasonably well,
overall performance is crippled by the poor I/O
bandwidth, and the interrupt architecture of the 386
and the ISA bus also contributes to reduced perfor-
mance.

The virtual memory management subsystem of
386BSD was derived from the Mach memory
management code; a member of the CRSG has been
heard to say that the old BSD VM code was ripped
from the kernel, and the Mach memory management
code placed next to the kernel and hot glue poured
down the middle. Following code path traces of vari-
ous virtual memory functions seem to support this

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 383



Hardware Profiling of Kernels McRae

model, and it seems the glue is fairly thick in some
places and thin in others. Some functions seem to
run surprisingly fast; the routine that handles page
faults and enables new pages to be accessed
(vm_fault) takes about 400 microseconds, which
seems reasonably low overhead. On the other hand,
an excessive number of page faults seem to occur at
times. Where the real performance problems lie is in
creating new VM contexts for new processes, as
explained in the next section.

Fork/exec Profiling

A common operation of UNIX is to fork a pro-
cess and create a child copy of the process, which
then execs a new process image. For UNIX to per-
form well, these two operations must be reasonably
fast, since some UNIX operations rely on a low cost
of process creation.

The current situation looks fairly abysmal; it
takes some 24 milliseconds to perform a vfork opera-
tion, and it takes about 28 milliseconds to perform
an execve system call. This adds to about 52 mil-
liseconds to perform a combined fork/exec operation.
Note that these times do not include any disk
activity, as the process image was already cached.
Where is this time being used? In figure 5 a sum-
mary of the highest cost subroutines is shown.

Elapsed Net # calls (max/avg/min) % real % net name
77603 58913 67 (14061/879/2) 5.02% 28.22% pmap_remove
22283 22148 5549 (66/3/2) 1.89% 10.61% pmap_pte
12938 12938 1215 (13/10/9) 1.10% 6.20% splnet
10912 10874 3 (3634/3624/3613) 0.93% 5.21% bcopyb
33435 10134 453 (40/22/21) 0.86% 4.85% spl0
15963 7876 8 (3862/984/3) 0.67% 3.77% pmap_protect
5657 5657 77 (244/73/3) 0.48% 2.71% bcopy
47723 4889 115 (64/42/27) 0.42% 2.34% vm_fault
4759 4759 1349 (5/3/3) 0.41% 2.28% splx
7836 4361 236 (29/18/13) 0.37% 2.09% vm_page_lookup
7320 3489 119 (39/29/12) 0.30% 1.67% pmap_enter
3457 3457 38 (132/90/2) 0.29% 1.66% bzero

Figure 5: High cost subroutines

Most of the CPU time occurs within a small
number of routines; it is clear that the pmap module
is a bottleneck when manipulation of the virtual
memory is required (the bcopyb call relates to scrol-
ling of the console screen, so it should be ignored
for the purpose of the exercise). Over 50% of the
time is being spent in the virtual memory routines
shown above. Examination of the code path trace
shows that pmap_pte is called 1053 times when a
fork is executed, and a similar amount when an exec
is done. Further analysis of the code path shows the
exact progress of the fork operation, and each sub-
section can be examined in detail to see the amount
of time it is taking, and whether significant

optimisation can take place. There is a major amount
of cross-calling between the pmap module, and the
rest of the virtual memory subsystem, so it is
envisaged that a major performance benefit would
occur if some of that glue could be trimmed back
and some sculpting of the interface performed.

Network Performance

Profiling was performed on the TCP/IP and
socket code by running a program that listened on a
socket and when another host connected, read and
discard the data. A Sun Sparcstation 2 was used as
the host to send the data, as I was sure it could fill
the available network bandwidth to the PC over an
ethernet.

This was the only test that caused the PC to be
totally CPU bound, so that essentially the CPU was
busy 100% of the time. It was obvious that the PC
could not process the data from the network at any-
where near Ethernet speed. Examining the code
path trace and function summary showed that 33.6%
of the time was spent in bcopy, and that 30.8% of
the time was spent in in_cksum. Again, splnet, splx
and spl0 contributed around 9% of the time.

Delving further into the code path trace, it was
clear that a major bottleneck occurs because the Eth-
ernet driver for the card must copy that data from
the onboard controller memory across the bus; each
TCP data packet that was received (i.e a full Ether-
net packet) took about 1045 microseconds to process
at the driver level. This alone is only about 20%
more data throughput than Ethernet itself, so it is
unlikely that Ethernet data rates through to the net-
work applications can be achieved using this 8 bit
controller card, unless the rest of the software has
been tuned for minimum overhead. One approach to
solve this copying overhead is to make the buffers
on the controller memory external mbuf memory, so
that all the driver has to do is link the received
packet(s) to mbuf headers, and then the double copy-
ing would be avoided (once from the controller

384 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



McRae Hardware Profiling of Kernels

memory to mbufs, and then via copyout to the user
data space).

Would this help? Contrary to intuition, this
would actually decrease the performance, and using
the accurate timing provided by the Profiler, a close
estimate of the impact can be calculated. It takes
bcopy around 1045 microseconds to copy 1500 bytes
from the controller; copyout takes about 40
microseconds to copy a 1Kbyte mbuf cluster to the
user data space. If the controller memory were
accessed only once, then collapsing bcopy and copy-
out would give at most a gain of 60 microseconds
(less than 6%). But other routines access the network
packet as well, such as the TCP and IP input pro-
cessing routines, and most importantly the IP check-
sum routine. Checksumming the packet whilst in the
controller’s memory would add at least an extra 980
microseconds to the overall processing of the packet.
The time to process a packet would increase from
2000 microseconds to around 3000 microseconds, a
big loss. It is now obvious that if you have slow
controller memory, it is a big win to get it out of
that memory as soon as possible into faster main
store.

The other major CPU user was the checksum
routine itself, which was almost a big an overhead as
the driver packet copy. This was surprising at first,
as the packet was now in main memory, and the
checksumming should be close to memory-to-
memory copying speeds. To checksum a 1 Kbyte
packet was taking 843 microseconds. It was
discovered that the in_cksum routine has not been
optimally coded (e.g., like other architectures where
it is done in assembler), and recoding this routine
should provide a reduction in packet processing from
2000 microseconds to perhaps 1200 microseconds;
this would provide a major improvement in network
performance, and the limiting factor would become
the memory bandwidth available to the network con-
troller across the ISA bus.

Another conclusion that can drawn is that a
much faster I/O architecture is required before seri-
ous data throughput can be expected, but I think we
all knew that.

Filesystems

Separate profiling studies have been performed
on the BSD Fast File System (FFS) code and the
Network File System code. Due to the network per-
formance problems discussed in the previous section,
any performance issues in the actual NFS implemen-
tation are totally swamped by the I/O bandwidth
limitations. An interesting situation arises due to the
fact that UDP checksums are usually turned off with
NFS; since the checksum routine contributed a large
proportion to the CPU overhead, NFS actually pro-
vides less overhead and better throughput than an
FTP style connection!

Given the tracing capabilities of the Profiler, it
was easy to get accurate measurements of the net-
work turn around time with NFS RPC calls, and to
see how long to formulate the request, send it and
then how long to process the reply.

The disc controller used in the target PC was
an IDE controller on a Seagate ST3144 disc. The
FFS profiling showed how disc seek times impact
the I/O throughput. Each read of the disc varied
from 18 milliseconds up to 26 milliseconds. Each
write interrupt took about 200 microseconds in total,
with about 149 microseconds of that being actual
transfer time of the data to the controller. Interrupts
seemed to be close together most of the time (< 100
microseconds), so the disc driver may well be
improved by waiting a short time after transferring
the data to see if the controller is ready to accept
another block straight away.

Overall, the CPU was only busy for 28% of the
time when doing a large number of writes, so the
disc seek times are still the major influence in deter-
mining disc throughput. It was interesting to see
that out of that 28%, at least 6% was spent in the
spl* routines. It would be interesting to use a dif-
ferent type of controller (maybe one with DMA) and
see what difference it makes.

Conclusions and Future Work

The major conclusion about the performance of
386BSD is that there are a small number of areas
that need addressing, that when fixed should improve
the performance considerably. The hardest area to
address is the virtual memory subsystem. The easiest
area would the IP checksumming. The grossest area
of mismatch between the hardware architecture and
UNIX is the interrupt priority control and lack of
software interrupts.

It was also clear that the hardware I/O perfor-
mance is a major factor, and that the platform the
profiling was performed on is crippled in I/O
bandwidth.

Even in its simple prototype form, the Profiler
has proved to be an invaluable tool for looking under
the hood while the engine is running. One clumsy
aspect that remains is the uploading of the Profiler
data to a host for processing; currently this is manu-
ally performed, which slows down the profiling pro-
cess somewhat. I am considering a new improved
Profiler hardware design with more memory and
some extra facilities. A higher clock precision has
been considered, especially if the Profiler were con-
nected to a upmarket workstation architecture such
as a Sun or DEC; this would entail fitting a wider
RAM module for accepting more clock data bits. It
is unclear at this stage whether a higher clock rate is
really needed, though.

The method of connection via EPROM socket
has proved to be so useful that it is hard to see how

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 385



Hardware Profiling of Kernels McRae

it could be improved. The next step is to bring in the
EPROM data lines as well, and have a Zero Inser-
tion Force socket for the EPROM on the Profiler
itself. Then once the Profiler has been used to collect
the data, each of the storage RAMs in turn can be
multiplexed into the EPROM address space, and the
data can be read as if it were an EPROM. This
would allow fast turnaround for processing the
Profiler data.

Since the raw data comes in a simple package,
a lot of analysis can be applied to the raw data.
Further work in this area hopefully will yield sophis-
ticated tools that allow statistical processing of the
data, groupings of functions into separate subsys-
tems, and other ways to process the data.

Acknowledgements

Thanks must go to Bryan Grayson, who slaved
with me over a hot logic analyser. Without his
invaluable assistance the Profiler would still just be
an idea.

Thanks also to Megadata, who suffer me being
distracted from doing real work for long enough to
try out new ideas.

Finally thanks must go to William Jolitz and
the UCB Computer Science Research Group, who
have brought dreams into reality for a lot of people
who have always wanted to hack on kernels.

Author Information

Andrew McRae is a software engineer with the
Australian company Megadata Pty Ltd, where for the
last 9 years he has worked on real time supervisory
and control systems. His responsibilities include
communications and embedded systems, and a range
of other areas such as Unix applications and drivers.
He has been involved with the Australian Open Sys-
tem Users Group (AUUG) since 1986. Prior to join-
ing Megadata he co-founded a company specialising
in motion control special effects and computer
graphics for film and television. He can be reached
via electronic mail at andrew@megadata.mega.oz.au,
or via snail mail at Megadata, PO Box 1687, Mac-
quarie Centre, NSW 2113, Australia.

386 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA


