
Hardware Profiling of Kernels.

Andrew McRae

Megadata Pty Ltd.
2/37 Waterloo Rd

North Ryde
andrew@megadata.mega.oz.au

Or: How to look under the Hood while the Engine is Running.

This paper describes a method of accurately measuring and profiling kernel code in
real time. Some background is covered, which describes other more common, and easier,
methods of profiling, and why these methods were rejected. Some goals are stated, and a
proposed hardware/software solution is described. As a case study, the profiling method
is used to evaluate a kernel incorporating the Berkeley TCP/IP networking code; the
results of this exercise are presented, showing how tracing of network software in real
time highlights optimal or non-optimal code paths.

Warning to software people: this paper contains some descriptions of hardware.

Warning to non-kernel-hackers: this paper has lots of kernel hacking in it.

1. Optimisations.

Michael Jackson (the safe [non-dangerous] one) has made some pertinent remarks about optimisa-
tion.

Jackson’s First Rule of Optimisation:

Don’t do it.

Jackson’s Second Rule of Optimisation (for very experienced programmers):

Think about it, then don’t do it.

This expresses a well founded caution, often ignored by the naive, who would do well to remember
the Prime Directive for Optimisation (as espoused by Kernighan and Plauger):

Make it right before you make it fast.

Even so, much effort goes into making programs as fast as possible, leading to a plethora of optimis-
ing pre-processors, compilers, assemblers etc. Given a poor or slow design, however, the best optimising
compilers are generally not of great benefit. Experience has shown that if a piece of software is not per-
forming, reviewing the design is often the best, sometimes only, way of obtaining significant improvement.

Testing compiler optimisations is relatively easy; for a given set of test cases, the resultant instruction
stream can be analysed to check for near-optimal code size or length of code path. Even given perfect
translators, how can we test our designs in the same way? Generally programs are comprised of a number
of algorithms, often interacting. How do we decide which algorithm is slow, or if a particular design section
is far from optimal?

The key to all optimisation is to understand where or if it should be applied, and therefore the Golden
Rule of Optimisation is:

Measure BEFORE you optimise.

UNIX† has a number of tools to help in this area; compiler profiling allows time based and function

† UNIX is a registered trademark of AT&T UNIX System Laboratories.

- 2 -

entry/exit profiling to be incorporated into programs, which then allow operating statistics to be extracted
and analysed. Generally this is good enough for most programs, as the programs are not usually interacting
with, or affected by, real world events. Simulators have also been used to effect by providing a much higher
degree of granularity to profiling, allowing tracing of code paths etc. But often setting up and executing a
simulation is difficult, or the simulator cannot provide for interaction with ‘real time’ events.

2. Kernel Measurement.

Kernels are a special case in that they must interface to certain real world entities, such as devices,
networks, memories, clocks etc. Subtle and complex interactions occur between device drivers, processes
and external events, and anyone who has attempted to fix bugs caused by these interactions will appreciate
the difficulty in ascertaining hard data as to where optimisation is best applied. Kernel measurement has
progressed to the point where it could be labelled A Black Art, instead of the realm of Wild Guesses. Ker-
nels can be profiled, and through the use of statistics to count specific events, it is possible to do a fair job
of deciding where a kernel is very slow, slow or not-as-slow-as-the-rest.

Some areas of kernels can be measured in the same way as user programs, using function counting
and gross clock profiling, but these are not the interesting areas. What happens if one wishes to profile the
clock interrupt code itself? What happens if you wish to measure the time taken to process character input
interrupts, or discover the optimal code path taken for processing back-to-back packets through a certain
protocol stack, checking the time to reply with acknowledgements?

The fly in the ointment is that kernel profiling is in the same vein as the Heisenberg Uncertainty Prin-
ciple i.e the more accurate your measurements, the more you are perturbing the environment in which the
kernel is running, and the less likely of getting data which reflects the actual state of the unprofiled kernel.
Other methods are available which are non-intrusive, such as connecting large amounts of hardware to
record the instruction stream; this is expensive and requires specialised hardware. Another problem with
this method is that it often does not cope with cache effects; instruction caches must be turned off, thus
ruining the non-intrusive nature of the measurement.

So we are faced with a dilemma; in order to rationally test kernel designs and code, we need accurate
measurements, but in obtaining these measurements we change the environment of the kernel, and possibly
introduce erroneous measurands (and consequently make wrong design decisions). Any kernel profiling
system must be as non-intrusive as possible, or at least keep the effect of measurement to a minimum so
that it does not grossly change the timing characteristics.

3. The Goals.

As a result of much software written in an embedded environment, a great deal of it driver and kernel
related, I became increasingly interested in being able to easily measure and profile the software, and so
make rational and informed judgements concerning algorithms and coding techniques. Faced with the regu-
lar need to discover why things were not responding at the expected speed, it quickly became clear that the
human brain is not a good enough simulator to handle the complex timing interactions occurring within a
kernel. Some early solutions to the problem was to use statistic counters, but this was usually too gross a
measurement to help. Another favourite method was to press-gang a hardware engineer to connect an oscil-
loscope to the equipment; this enabled finger-in-the-wind type measurements, and certainly helped when
external hardware was being controlled.

Sophisticated tools such as logic analysers provided a major benefit, as whole sequences of events
could be trapped and examined in the cold light of day. More intelligent software within the analysers also
allowed instruction disassembly, which made easier work of following code paths, but this was generally
tedious and unfriendly because of the difficulty in relating the raw instruction stream back to the source
code. Other software can be made to perform time based profiling, but the sampling granularity was gener-
ally too coarse to be of any use.

In-circuit Emulators generally are considered the top of the heap for embedded development, and
come with complete suites of cross-compilers, assemblers, remote debuggers and hardware which allows
all manner of tracing and measuring programs. They also come with Rolls Royce price tags. Unfortunately
they tend to be black boxes when it comes to analysing the data; it is often difficult to extract the desired

- 3 -

information from the raw timing data.

I still had a need to find out what was happening inside our embedded computers, but I had a limited
budget. I wanted to do the equivalent of what our local car mechanic does, to open the hood, listen to the
engine running, judge the revolutions, feel the temperature, and so forth.

By now I had tried several ways of getting the data, and I had formulated a wish list to describe what
I wanted.

• Fine granularity of measurement, so that accurate profiling may be obtained.

• Little or no intrusiveness, so that taking the measurement will not affect the timing of the kernel.

• Integration with development tools or program source so that source level code paths may be traced
with ease.

• Profiling to occur for all kernel operations within a selected interval, including clock interrupts,
device interrupts, even periods when processor interrupts were locked out.

• If some hardware assists were to be employed, then some easy and portable method of connection
should be used e.g not having to connect 96 separate clips to a PCB.

• Immune to instruction cache effects. In fact it should still work as expected with instruction caching
enabled (as any ‘production’ code would run the cache enabled).

• Granularity to a function level (however short the function is) should be the worst case; however it is
desirable to also profile within functions if possible.

• Whilst the inital target should be a 68020 system, future systems employing other types of micropro-
cessors should be capable of being profiled.

It became clear that it is impossible to fulfill these goals with software alone. It is also clear that com-
plex hardware did not offer an elegant (or cheap) alternative This paper describes a solution to this problem
which is a better alternative to software only kernel profiling, and much cheaper than specialised and com-
plex ICE hardware measurements of kernel operation. It attempts to meet the above goals, and also be sim-
ple and cheap enough to build without much effort (even a software engineer could manage it).

4. The Profiler.

Three basic building blocks are used in the profiling system proposed; the first is a hardware device
that is used to record time and event data into a RAM block. The second is a modified C compiler that
allows event triggering code to be inserted into key locations, and finally the last building block is analysis
software that is used to decode the backtrace of events and relate it to the source code.

4.1. The Hardware.

The role of the hardware in the Profiler is very simple. Its job is to store timing information and some
identification value. It purposely is as simple as possible, primarily because it was a first attempt at explor-
ing what the basic hardware requirements were for meeting the goals. A lesser goal was cost minimisation;
as long as the cost could be held to something below several hundreds of dollars than the Profiler could be
built by just about anybody. Finally the Profiler is simple because I hate wire wrapping; it’s so much more
tedious than writing software.

Commonly available parts were used, and the hardware prototyped on a simple breadboard using
wire wrapping. A single electrically erasable PAL is used for the logic and timing functions; total parts cost
less than $100 dollars. It has a chip count of 5 static RAMs, 5 counters, 1 PAL, 1 oscillator and 1 delay line.
Having an EE PAL turned out to be a great boon, as it meant quite a bit of experimenting could take place
to get the logic right, and also allowed extra facilities to be incorporated such as some display LEDs and
control switches.

A block diagram appears below.

- 4 -

A
D
D
R
E
S
S

Microsecond
Clock

Trigger

RAM Bank

Event

Figure 1

When the identification code (‘event’) is presented to the Profiler, then it stores this code along with a
microsecond clock value into RAM. The RAM address is automatically incremented every time an event is
stored, essentially storing the event/time in a large list. The list is 16K events long. The microsecond timer
is 24 bits long, allowing a maximum time of 16 seconds between events before the time is wrapped around
and information is lost. Note that this is the maximum time between events, not the total time that can be
profiled - the analysis software only uses the timer value as an interval time, not as an absolute time. The
event tag is 16 bits, allowing 65536 unique event tags.

The trick in this scheme is not the gathering or storing of the event/time data (a SMOH [Simple Mat-
ter Of Hardware]), but how to generate the event code, which must come from the equipment being mea-
sured. At first thought I had planned to detect specific instruction codes that represented function entry and
exit points (e.g on the 680x0 every C function begins with a LINK statement, which translates to a hex
instruction code of 4E56 - a return from subroutine translates to 4E75); this scheme had the advantage that
is was totally non-instrusive but suffered from a number of shortcomings, such as inability to profile within
subroutines.

It was clear that some software assist was required to actually trigger the profile events. One way
was to place code at specific points to write the event value to a special location, but this assumes the
equipment can actually perform the addressing required; the code translated to an instruction like:

MOVE.W #val,EVENT_ADDR

All up this instruction cost 8 bytes, 4 read memory cycles and 1 write cycle (16 bit memory). It
wasn’t really a minimal trigger.

An elegant solution presented itself when I realised that the target equipment always has a boot
EPROM located at location 0. Generally this was not used once the kernel relocated itself to RAM. It also
presented itself as a simple method of connecting the Profiler to the equipment, just by piggy-backing a
EPROM socket onto some cable, using the cable to bring the appropriate signals into the Profiler and then
plugging the boot EPROM into the socket. The selecting of the boot EPROM is the event trigger, and the
address presented is stored as the event data.

Thus the event could be stored using the instruction:

TST.B #event_val

Because event_val is accessing EPROM at location 0, it can use 16 bit absolute addressing. Total
instruction length is 4 bytes, 2 16 bit reads, 1 8 bit read in total. On a 32 bit memory bus there is minimal

- 5 -

overhead in using this event trigger.

Only 18 signal lines needed to be brought into the Profiler (16 address lines, the EPROM CE signal,
and ground). This simple and easy method of connection allowed the Profiler to connect to any piece of
equipment that contained a standard EPROM socket, without other connections. Power is obtained from the
EPROM socket, so the Profiler is self contained.

A toggle switch provided simple control of the Profiler; when off it disabled all Profiler functions,
when switched on it started the Profiler by zeroing the microsecond and address counter and enabled trigger
values to be stored. When the address counter overflows the Profiler is automatically disabled, preserving
the RAM contents from being overwritten from the address wraparound. A LED is activated when this
occurs, indicating the end of a profiling run. Another LED is active whenever the Profiler is enabled, indi-
cating data is being stored.

Once the data is in the RAM, how do we get it out? In the prototype, static RAM chips were plugged

be relocated to another board and uploaded to a host. This was sufficient for the prototype, but obviously
tedious to do when performing a number of profiling runs. Plans for the next version provide for a much
better method of extracting the data i.e all EPROM signals will be connected to the Profiler, and each bank
of RAM will be multiplexed to the EPROM in turn, allowing the timing data to be automatically extracted
via a user program or device driver.

The profiling scenario is now clear; simple software triggers are sprinkled in strategic locations
throughout the target software. Each time one of the triggers is executed the time and trigger value is
recorded. Once enough samples are stored, the timing data is retrieved and correlated back to the source
code, allowing meaningful and accurate evalutation to take place.

And so I had a workable hardware/software scheme that could record with accuracy specific events
occurring, was easy to connect to a piece of equipment, didn’t require lots of fiddly signal hooks, and the
software trigger was minimal enough not to intrude very much in the timing of the kernel.

4.2. Generating the Triggers.

The next problem was how to manage the event triggers i.e how to automatically generate them in
the target code, and how to manage the event value so that it could relate back to functions and points
within functions. It seemed natural to place a trigger at the entry and exit of each function; that way code
paths could be traced, and accumulated times calculated for each subroutine. It isn’t really practicable to
modify the source code to explicitly add the triggers; this would mean that a macro would have to be used
so that the profiling could be turned off, and it would also mean manual allocation of a trigger value to each
function, something that is tedious and error prone to manage. Besides, many functions have separate exit
points, and often functions contain some initialization as part of their local variable declarations which
would be performed before the trigger; this would give inaccurate timing results.

So it was decided to modify the compiler to add the trigger points; the Free Software Foundation’s
GNU C compiler was modified to generate the triggers at the start and end of every function. For ease of
processing and identification, each function is assigned a trigger value that is an even number, and that
number + 1 is used as the function exit trigger. The trigger value is taken from a file containing the function
names and values. The profiling was enabled via a compiler option thus:

gcc -O -c -mprofile=name_file x.c

The option argument name_file contains function names and corresponding trigger values. If func-
tions are compiled that do not appear in the file, they are allocated the next sequential value and the name
appended to the file. The user can start with an empty file and allow the compiler to generate all trigger val-
ues. The name file can also be manually edited to tune the profiling in various ways, as described below.

A segment of a sample name file is show below:

duartint/100
splclock/106
splimp/110

- 6 -

softint/112
vec0/116
sw_sys/200$
sw_task/202*
MGET/222=
MCLGET/224=
MCLFREE/226=
MFREE/228=
soo_rw/5038
soo_ioctl/5040
soo_select/5042

If a function’s trigger value is 0 then no trigger will be generated for that function. Each trigger may have a
single character modifier appended indicating whether the trigger deserves special treatment. An inline trig-
ger is indicated as an equals sign; a dollar sign and an asterisk indicate that these functions are involved in
context switching, and the flow of control is not obvious. These modifiers are necessary so that context
switching is taken into account when analysing the data.

Inline triggers can be easily added to functions by including a profiling header file. The header file
contains:

#ifdef PROF
#define PROFILE(x) asm("tstb " #x);
#else
#define PROFILE(x)
#endif

The inline triggers can then be added to code by adding the name into the name file, allocating a trig-
ger value, and placing the macro with the trigger value as the argument into the desired location.

4.3. Analysing the data.

Once the triggers were generated in the object code, and the Profiler captured some events, the raw
data is then uploaded to a UNIX host. The data is processed by matching the event data (with the microsec-
ond time values) with the function names as listed in the name file. Currently two different analyses can be
generated; the first is a summary of each function’s statistics. Preceding this is an overall summary of the
profiling data. An example is shown:

Elapsed time = 1 sec 586839 us
Accumulated run time = 0 sec 815785 us (51.41%)
Idle time = 0 sec 771054 us (48.59%)

Elapsed Net # calls (max/avg/min) % real % net name
3641 3432 1323 (16/2/2) 0.22% 0.42% splnet

367833 3365 274 (27/12/11) 0.21% 0.41% softint
715 715 320 (3/2/2) 0.05% 0.09% setsoftnet

55571 3539 440 (9/8/5) 0.22% 0.43% vec1
100 86 5 (18/17/17) 0.01% 0.01% m_get
49 16 1 (16/16/16) 0.00% 0.00% soaccept

721953 45293 267 (236/169/136) 2.85% 5.55% soreceive
151 34 1 (34/34/34) 0.00% 0.00% soisconnected
349 39 1 (39/39/39) 0.00% 0.00% sonewconn
...

- 7 -

The elapsed time for each function is the accumulated interval time recorded between the function
entry and exit. The net time is the accumulated time minus the accumulated time of all subroutines that are
called from this function, giving an overall time for this function alone. The count of calls to each function
is calculated, as well as the maximum, minimum and average time spent in each function. The net time is
expressed as a percentage of the absolute elapsed time for the entire run (% real), and also as a percentage
of the total time the processor was not sitting in the idle loop.

These statistics give accurate and concise summaries of the processor activity, and can quickly high-
light bottlenecks or subroutines that are heavily used.

The second report shows a real time code path trace, along with accumulated and separate function
timings. Subroutines are shown as nested where necessary to allow easy following of the code path; a sam-
ple is shown below:

0:760 522 -> softint (13 us, 30 total)
0:760 530 -> ipintr (14 us, 17 total)
0:760 535 -> splimp (3 us)
0:760 547 <-
0:760 552 <-
0:760 574 ---- Context switch in ----
0:760 588 <- sleep (4 us, 14 total)
0:760 596 -> selscan (399 us, 497 total)
0:760 631 -> soo_select (19 us, 27 total)
0:760 636 -> splnet (2 us)
0:760 647 -> sbselqueue (6 us)
0:760 658 <-

...
0:761 093 <-
0:761 119 <- select (34 us, 545 total)
0:761 151 -> accept (70 us, 256 total)
0:761 158 -> getsock (8 us, 13 total)
0:761 161 -> getf (5 us)
0:761 171 <-
0:761 175 -> splnet (2 us)
0:761 186 -> ufalloc (27 us)
0:761 217 -> falloc (32 us)
0:761 254 -> soqremque (13 us)
0:761 273 -> m_get (17 us, 20 total)
0:761 276 == MGET (3 us)

...

Accumulated and net elapsed times are shown for each function e.g the accept call is shown as taking
256 microseconds total elapsed time, but only 70 microseconds was actually spent in the accept routine; the
other 186 microseconds was spent in subroutines called within accept. Inline triggers are marked using
‘==’. The modifiers in the names file allow detection of context switches, which are marked accordingly.

5. A Case Study.

How well does the Profiler operate in real world situations? The first experiment performed was
aimed at evaluating the performance of the Berkeley TCP/IP code in conjunction with the Megadata
embedded kernel. The hardware was a 68020 running at 20 MHz, using a separate Ethernet board over a
slow/medium speed bus. The Ethernet board had local memory into which a AMD LANCE would transfer
packets. A process was set up that listened on a TCP port, and when a connection was made a process was
spawned that acted as a data sink. A Sun IPX was used to open a connection to the TCP port, and dump an
arbitary amount of null data across the connection.

- 8 -

A summary of the profiling is shown below (most functions are not shown for brevities sake).

Elapsed Net # calls (max/avg/min) % real % net name
298926 2677 218 (26/12/11) 0.06% 0.34% softint
257602 2745 339 (9/8/7) 0.06% 0.35% vec1
5365 3959 190 (25/20/19) 0.09% 0.51% m_free
27871 16303 251 (83/64/63) 0.35% 2.08% m_pullup
512108 51347 285 (239/180/27) 1.12% 6.56% soreceive
17511 2318 302 (16/7/3) 0.05% 0.30% sbwakeup
22412 2080 302 (12/6/5) 0.05% 0.27% sowakeup
34851 3686 289 (21/12/8) 0.08% 0.47% sbappend
29078 15991 288 (90/55/28) 0.35% 2.04% sbcompress
107598 86938 850 (277/102/27) 1.89% 11.10% in_cksum
290913 21596 188 (294/114/13) 0.47% 2.76% ipintr
82042 7727 131 (72/58/57) 0.17% 0.99% ip_output
218625 37394 294 (185/127/124) 0.81% 4.78% tcp_input
157383 43991 579 (185/75/43) 0.96% 5.62% tcp_output
143131 8107 290 (47/27/27) 0.18% 1.04% tcp_usrreq
23871 23785 921 (40/25/24) 0.52% 3.04% clock
157250 113515 856 (369/132/33) 2.47% 14.50% uiomove
56805 7375 131 (71/56/54) 0.16% 0.94% leoutput
14207 13846 262 (128/52/8) 0.30% 1.77% lestart
254857 249139 339 (3372/734/28) 5.41% 31.82% lanisr

As expected, routines which traverse the incoming data take up the bulk of the time (e.g in_cksum,
uiomove). A big surprise was the time of the Ethernet driver’s interrupt handler. Some of this could be
explained as slow memory requests over the external bus, but a glance at the maximum and average times
showed that at least one interrupt took 3.3 milliseconds to process! The next step was to examine the code
path trace and actually see what was going on. An inline trigger was placed at the start of processing for
each received ethernet packet. The code path seen was thus:

1:169 991 -> vec1 (8 us, 2183 total)
1:169 996 -> lanisr (2153 us, 2175 total)
1:170 014 == le_rxpkt (18 us)
1:170 024 == MGET (28 us)
1:170 026 -> splimp (3 us)
1:170 043 == MCLGET (47 us)
1:170 045 -> splimp (3 us)
1:170 996 == MGET (1000 us)
1:170 998 -> splimp (3 us)
1:171 104 -> setsoftnet (2 us)
1:171 128 == le_rxpkt (1132 us)
1:171 138 == MGET (1142 us)
1:171 140 -> splimp (3 us)
1:171 157 == MCLGET (1161 us)
1:171 159 -> splimp (3 us)
1:172 037 == MGET (2041 us)
1:172 039 -> splimp (3 us)
1:172 145 -> setsoftnet (2 us)
1:172 171 <-
1:172 174 <-

- 9 -

The inline triggers showed that back-to-back packets were being received, and each packet was being
transferred into an mbuf cluster and an ordinary mbuf. The time taken was in the copying of the packet
from the local board memory to the internal mbufs. From this a maximum bandwidth could be calculated.
This was considered unacceptable, and some options were examined that might remove this bottleneck. It
was seen also that after the packet was copied into the mbufs, the data would eventually be copied out from
the mbuf space into application buffers via read, so a good solution would attempt to minimise the amount
of data copying.

One scheme attempted to optimise the copy from the ethernet board via loop unrolling, which would
be usually an acceptable solution, but again the Profiler showed it made little difference to actual time. So
some design modifications were made to the mbuf handling so that a a ‘foreign’ cluster buffer could be
accomodated (Sun has a similar scheme); received packets are stored in 1518 byte buffers in the ethernet
controller ’s local memory, and these buffers are then ‘loaned’ to the network code. The network code then
processes these buffers as it would any other mbuf cluster, and when the mbuf cluster is freed, it calls a
handler that returns the buffer back to the owner. Thus the only copying should be the transfer from the eth-
ernet board’s buffer to the application process (an unavoidable copy).

Would this improve things? If so, by how much? Previously it would be very difficult to answer these
questions, but not only can these questions be answered using the Profiler, but it can answer them to two
decimal places.

The new summary looked thus:

Elapsed Net # calls (max/avg/min) % real % net name
367833 3365 274 (27/12/11) 0.21% 0.41% softint
55571 3539 440 (9/8/5) 0.22% 0.43% vec1
30608 28609 307 (118/93/86) 1.80% 3.51% m_pullup
721953 45293 267 (236/169/136) 2.85% 5.55% soreceive
13082 3913 304 (19/12/8) 0.25% 0.48% sbappend
9023 8877 304 (33/29/28) 0.56% 1.09% sbcompress

230786 207568 880 (993/235/27) 13.08% 25.44% in_cksum
360987 23587 267 (270/88/13) 1.49% 2.89% ipintr
296221 38807 307 (181/126/122) 2.45% 4.76% tcp_input
96127 44059 575 (185/76/43) 2.78% 5.40% tcp_output
8223 8197 318 (46/25/25) 0.52% 1.00% clock

504229 245434 752 (1071/326/33) 15.47% 30.09% uiomove
32791 7309 133 (57/54/53) 0.46% 0.90% leoutput
14348 14001 266 (126/52/9) 0.88% 1.72% lestart
52032 34538 440 (235/78/26) 2.18% 4.23% lanisr

Some interesting effects can be seen; the amount of time taken by the ethernet interrupt handler is
reduced to an average of 78 microseconds, but the average time spent in in_cksum and uiomove has more
than doubled! Overall there is a major improvement because of the elimination of one set of data copying,
but because the TCP data packet is now accessed over a slower bus there is a noticeable degradation in
computing the packet’s checksum and moving it to the application buffer. This raises the difficult question
of whether it would be more economical to copy the data once from the slower bus memory to the fast
internal mbuf memory, or take the extra delays in bus access.

The major bottleneck is now clearly seen to be the external bus acesses, and design decisions may be
made to increase the bus speed now that there is clear evidence of poor performance.

The important lesson here is that quantitative measurement allows these optimisation and designs
issues to be tested rigorously, and accurate comparisons made, which just goes to prove:

Measure BEFORE you optimise.

- 10 -

6. Further Applications and Conclusions.

The next (and hopefully much more fruitful) exercise is to apply the analysis to the OSI stack incor-
porated in the recent Second Berkeley Networking Release, which is the basis of BSD 4.4 (yet to be
released). Due to the untuned nature of this code, and to the lack of long term experience with complete
OSI implementations, it is expected that the Profiler will be a valuable tool in providing detailed informa-
tion about how to optimise the code paths within the networking software.

Another goal is to connect the Profiler to a PC running the freely available 386BSD software, so that
measurement may take place of a real UNIX kernel, and profiling of the various subsystems of the kernel
may take place. This will provide interesting data on the performance of virtual memory systems, file sys-
tem support, and sophisticated networking applications such as NFS etc.

It is hoped that a case study of this kernel can be presented at the AUUG Winter Conference.

