
Building a Router on Linux

 Andrew McRae (amcrae@netd.com)
NetDevices Inc.

Abstract
This paper presents a description of a mid-range services gateway that uses Linux as
an internal infrastructure. A range of subjects are discussed, such as security issues,
multi-CPU interaction, distribution, performance and scaling. The architecture of the
NetDevices SG-8 is described, with emphasis on the technical aspects of employing
Linux as the underlying infrastructure, and the benefits and costs involved.

As part of this infrastructure, a networking subsystem is described that addresses the
major issues with supporting a sophisticated and extensive packet processing
environment on Linux without sacrificing performance or robustness.

1.Introduction
Traditionally, routers are developed using proprietary operating systems (such as Cisco's
IOS), or by licensing an OS from a vendor (such as QNX, or VxWorks etc).
With the growing acceptance of Linux as an embedded or targeted OS, it is becoming more
common to see Linux being used in this environment. In fact, with the networking support
that is built in to Linux, a common arrangement is to use the networking facilities of Linux
wrapped with some friendly and vendor specific user interface.
There are significant advantages to using Linux in an embedded environment, such as cost,
portability, access to source etc. Sometimes, however, the developer can fall afoul of the
GPL if careful consideration is not taken e.g the Linksys situation, where using Linux
internally also meant that code tainted with the GPL must be freely offered when that code is
used in a publicly available application.
NetDevices Inc. is a Silicon Valley startup founded in 2003 with the goal of developing a next
generation services gateway, incorporating routing, firewall, VPN and other networking
applications in a single integrated device. This paper describes the experience in
implementing this device using Linux as an internal framework, but without using the Linux
networking facilities directly.

2.Environment Overview.
The NetDevices SG-8 is a state-of-the-art services gateway that incorporates many different
networking applications in a single integrated device, offering a high degree of
manageability, performance and robustness.
Physically, the SG-8 consists of a number of separate hardware hot-swappable modules,
interconnected with a high speed industry standard PCI-Express bus. A unique feature is the
introduction of a cluster of management orientated CPUs, separating the management
functions of the device from the control and data plane. These CPUs communicate via an
internal high speed LAN:

Internally, there are a number of different CPUs, some with functions related to the
management facilities of the device (providing user interface, CLI services, configuration,
monitoring etc.), and some dedicated to packet processing and control plane functions (route
protocol processing etc.).
Linux is running on each of these CPUs, and provides the infrastructure framework that
hosts the various applications running internally. These applications provide the router and
gateway functionality. Linux provides the following facilities:

Management
CPU

Management
CPU

Management
CPU Control/data

plane

Physical interfaces

● An embedded kernel, providing the usual kernel/user process model.
● Internal network connectivity, for communication between the various CPUs in the device.
● A familiar and well understood environment for hosting applications.
● The ability to run the same applications on a host PC for development and testing.
● The readily available open source packages that can be run on Linux with no change,

such as embedded web servers, SSH servers and clients, SNMP agents etc.
Given the widespread availability, portability, and cost of Linux, it is of no surprise that it is
rapidly becoming the preferred environment for embedded systems.

3.External/Internal View
Whilst Linux is being used internally on the SG-8, to all intents and purposes the user of the
system will never be aware of this fact, nor will the user be exposed to any specific Linux
user interface or Linux utility. Even though the device is being used to process network
packets, none of these packets are processed using the Linux networking facilities.

Instead, a NetDevices proprietary packet switching framework is used to provide the packet
processing applications. This framework is called NetIO, and forms the basis of the data and
control plane of the SG-8.

As can be seen, NetIO is a Linux kernel module that interacts with a user process, so that
the packet processing is actually performed in user space rather than kernel mode. NetIO
device drivers are used to provide the physical device interface.
There are a number of advantages to this approach, such as robustness, performance, and
modularity.
An internal Ethernet is used for the interconnection of the various CPUs in the system, so
that management and control information can flow around the system (no packets being
forwarded through the system ever appear on this internal network). For ease of addressing,
a simple 10.x.x.x addressing scheme is used.
Externally, however, the device is treated as a `single system view', so that external users
and network peers interact with the device just as if it were a single host with multiple
interfaces (just like any other router). More importantly, there is a strong isolation and
decoupling between the internal view of the system and the external view, for obvious
security and robustness reasons.
The interesting implication that arises from this external/internal decoupling is that very
extensive network applications and features can be implemented entirely according to the
user applications running on the system, irregardless of whether Linux itself supports these
features, or has anything to do with them. Conceptually, this model can be viewed as
creating a virtual router operating internally over a set of CPUs running Linux:

User process

User mode

Kernel mode

NetIO NetIO
device drivers

Knet
Interface

This has a number of advantages:
● The external addressing and interface management are entirely separate from the

addressing of the internal LAN, so that there is no overlap or mixing of traffic.
● Performance is highly scalable by the use of multiple data plane CPUs, or offload CPUs,

that are not externally visible.
● Sophisticated network features can be much more easily implemented, such as Virtual

Routing and Forwarding (VRF), where multiple routing and forwarding domains can
coexist within the device without any impact on the internal addressing.

● The system can be more robust, with the failure of individual elements not being visible
externally e.g if one management CPU fails, then another can provide the same services.

● A more isolated and secure separation is achieved between the key internal facilities and
the external packet traffic.

This model of separation between the internal and external view of the system has been
successful in delivering these advantages.

4.Management Gateway.
Given that there is now a separation between the external view of the system (and how
packets get in and out of the device), and the internal network, how does this impact
applications, especially applications that use the standard Linux networking facilities (such
as sockets etc.)? If I want to run an application like a SSH server using the standard
OpenSSH application, how does it interface internally so as to be visible in the external view
of the system?

This is achieved through the use of a facility called the Management Gateway (MG):

Virtual Router

Management
CPU

Management
CPU

Control/Data plane
CPU

External view

SSH
application

Data Plane

Management
Gateway

Tun interface

MG API

The MG is the bridge between the external view of the system, and the internal applications
that provide the management facilities of the system. When an application is to be accessed
from external packets, it will use a MG API to register itself. The MG will interact with the
data plane to register the UDP/TCP port number associated with that application.
Meanwhile, as part of the application initialisation, the application will open and listen on a
socket on the internal LAN. The application can be running on the same CPU, or a different
CPU, as the MG.
When packets arrive for that application, the data plane will forward the packets to the MG.
The MG will perform a Network Address Translation on that packet to map the packet
address to the address of an internal tunnel interface, and forward it to the application's
listening socket via the tunnel driver (used to deliver a user level packet into the kernel
networking stack). Packets sent from the application will be sent back to the tunnel interface,
where the MG will receive the raw packet, perform the appropriate reverse NAT, and forward
the packet to the data plane for transmitting.
The application may need to discover the peer address of the connection. If it used the
standard socket function (getpeeraddress), it would see the internal address of the tunnel
interface, rather than the real external address. So the MG API provides facilities for the
application to discover the peer address, port number and other context (for AAA or other
purposes).
The MG performs a critical role in mapping the external network interfaces into the internal
applications so that standard applications can be used with very little modification. The MG
will perform a range of functions:
● Knowledge of the various external network interfaces and IP addresses attached to

these interfaces.
● Awareness and mapping of multiple routing domains (VRFs) so that applications can use

the internal network for interacting with potentially overlapping private routing and
addressing domains (part of the MG API is to provide VRF information for the application
if it requires it, something that is unavailable through the stock Linux kernel.

● Security filtering of application packets, so that Denial of Service attacks will not impact
the manageability of the device.

● Load balancing when multiple instances of the application may be running on multiple
CPUs.

5.GPL Issues
As a lawyer quoted in a presentation when advising NetDevices concerning the GPL,
lawyers generally hate the GPL because it is so clear and watertight in its treatment of Open
Source – they would much prefer a BSD style license, which is quite different in its
commercial applicability. It is interesting to discuss the various considerations that needed to
be taken into account when actively developing in a mixed proprietary and GPL
environment. Care must be taken to avoid tainting GPL source with proprietary code (either
because the code is separately licensed, or being internally developed), and to maintain
strict boundaries and awareness of the areas where the GPL applies.

One approach that is used in the NetDevices system is to run specific GPL programs as
separate processes, using standard IPC mechanisms to present the data for processing. For
example, the use of Snort as an Intrusion Detection System is very common, so that many
customers and users have developed a high degree of trust in this tool. There is significant
advantage to be able to employ such a tool as an internal process incorporated seamlessly
into the main packet processing of the system by running Snort as a process on one of the
data plane CPUs, and internally passing packets to it for processing. In this way, there is no
violation of the GPL, and customers can use the best tool for the job, externally seamless.

In some areas where it may be somewhat grey, it is easier to simply provide various
interface libraries or code and make it Open Source to avoid any kind of GPL taint. The

Linksys experience shows that commercial organisations ignore the GPL at their peril, and
will quite correctly be taken to task for any kind of violation or license issue. Netdevices
position is that the GPL should be honoured in every situation, and pains are taken to ensure
that no licensing boundary is crossed.

Part of the approach here is that it can be shown that in a larger system or environment,
GPL and proprietary code can co-exist quite easily as long as care is taken to ensure the
appropriate boundaries are maintained; of course, there is the wider issue of whether all
code, proprietary or otherwise, should be Open Source, but the commercial reality is that this
is not a goal that will be achieved.

One interesting implication is the acceptance in the startup community of Linux and Open
Source in general, to the extent that most Venture Capital providers are well aware of Open
Source, and the significant advantages it holds. The Open Source environment has become
well wired into the DNA of the general software engineering community.

6.Conclusion.
The NetDevices SG-8 is an interesting product because it successfully employs many of the
advantages of using Linux and other Open Source product, whilst providing a sophisticated
and fully featured networking device.

The use of a decoupled external/internal view of the networking processing has successfully
allowed a greater degree of scalability, performance, security and robustness. The use of
Linux as an internal framework for an embedded system has delivered many significant
benefits, such as speed of development, testing, and application portability.

