
Porting TCP/IP to the 802.4 Token Bus LAN.

Andrew McRae

Megadata Pty Ltd.
andrew@megadata.mega.oz.au

This paper describes an implementation of TCP/IP that operates on the IEEE 802.4
Token Bus LAN system. Firstly a description of 802.4 is provided, which also encom-
passes the motivation underlying the porting effort, then a more detailed description of
the design and implementation issues is given. Finally a look is taken at the wider picture
to describe the environment into which such an implementation fits.

1. The 802.4 Token Bus LAN.

The OSI standards embrace three Local Area Network media specifications, each of which cater for
different environments and user needs. Each specification details the physical and electrical requirements of
the LAN, as well as the method of accessing the LAN, known as the Media Access Control (MAC). The
IEEE was responsible for formulating the specifications, and also for generating some ancillary standards,
such as the Logical Link Control standard (802.2) that is closely associated with the LAN standards. A
number of other standards are emerging that impact upon the LAN arena, such as FDDI or not-so-Local
Area Networks (e.g. 802.6 Metropolitan Area Network), but these are either currently too high in connec-
tion cost or unavailable in the general computing environment to be candidates for true LAN connectivity.

The IEEE 802.3 specification (Ethernet to all intents and purposes) formalised an existing LAN de-
facto standard developed some time ago, which (understating somewhat) has become widespread in its
installed base and vendor support. Ethernet is classed as a Carrier Sense Multiple Access/Collision Detect
(CSMA/CD) technology, meaning that the LAN relies on detecting other station’s transmission to indicate
whether a station can transmit, whether it has to wait, or whether another station’s trasmission has collided
with its own. It is basically a broadcast medium, in which all stations hear all packets on the wire. Ethernet
operates at 10 Megabits/second, and due to the nature of the MAC, has limits that should be adhered to for
correct operation (though these limits are regularly abused).

The 802.5 Token Ring network is also designed for the office environment, and has achieved a lim-
ited success, mostly due to the support of certain large vendors. It is cabled as a physical ring, and can oper-
ate at 4 Megabits/second with later versions operating at 16 Megabits/second. The stations are connected
to the ring via active transceivers. The MAC is based on a token being transmitted from each station to the
next. Stations can only transmit when they ‘own’ the token. Some complexities arise from the need to
ensure that a token must always be rotating and from token timing requirements. Token Ring has the
advantage over Ethernet that it can scale to higher speeds without fundamentally changing the nature of the
technology, optic fibre can be employed between stations etc, but the downside is the cabling requirements.

Both Token Ring and Ethernet are well known, and have a large installed base. The 802.4 Token Bus
LAN standard is relatively unheard of in the computing community, except perhaps in the process control
industry. The 802.4 Token Bus network is designed as a physically and electrically robust LAN for running
the Manufacturing Automation Protocol (MAP), and is aimed at providing LAN connectivity at the ‘factory
floor ’ level. MAP is unique among protocols in that it is a standard which has been almost solely driven by
a small number of specific users, the main one being General Motors. Essentially, GM generated MAP to
standardise the interconnection of process control equipment, numerically controlled machining equipment
and factory robots throughout a plant environment. Whilst MAP is fairly well known (if only as a buz-
zword), the Token Bus standard is rarely considered except as an integral part of MAP, and is relatively
unknown as a LAN specification.

MAP itself is defined as a complete OSI protocol stack, incorporating 802.4 as layer 1, 802.2 LLC as
layer 2, ISO CONS and CLNS as layer 3, TP4 and TP0 as layer 4, ASN.1 as layer 5, and ROSE/ACSE as
layer 6. The application layers of MAP are defined as VT, FTAM and MMS (Manufacturing Messaging
Service). Due to the considerable size and complexity of this requirement, and the need to fit working MAP
implementations into factory equipment, a revised version of MAP (called Mini-MAP) was defined that
removed layers 5 and 6.

Token Bus is a hybrid of LAN technologies. A range of different media, speed and cabling options
are available, allowing selection of the most appropriate technology for various needs. Token Bus can oper-
ate on 10 Megabit/second broadband, 10 Megabit/second carrier band, 5 Megabit/second carrier band, and
1 Megabit/second shielded twisted pair. The physical cabling is arranged as a bus, allowing easy extension
or partitioning (Figure 1). The cable used is armoured, and has extremely good electrical tolerance to noise
and interference.

C

BA

Figure 1

Each node is connected to the LAN via a passive tap. The tap is hermetically sealed and is impervi-
ous to dust and vibration. Since the tap contains no active components, much better electrical isolation can
be obtained, as well as protection from LAN disintegration due to tap electrical failure.

Whilst the physical LAN is a bus, the MAC is achieved through a logical station ring, where a token
is passed from station to station (Figure 2). Since the LAN is a bus, the media is a broadcast medium, but
with a layer of sophisticated control dealing with the access of the stations onto the LAN via a logical token
ring. This allows greater control over the operating characteristics of the LAN, both dynamic and static, as
well as exceptional robustness and fast response to error conditions.

Token Bus demands quite a bit more from a controller than Ethernet. For example, the Token Bus
controller after passing a token to the next logical station will eavesdrop on the LAN to ensure that the
token pass was successful. If not, it retries and eventually recovers by cutting out the failed station from the
ring and establishing a new ‘next station’ by passing the token to the next logical station after the failed sta-
tion. Periodically a delay is inserted in the token pass to solicit for any new stations that wish to enter the
ring.

The ring is established upon initialisation by stations attempting to ‘claim’ the token. The 48 bit
MAC address is instrumental in providing prioritisation of the stations both with token claim and also
establishing the order of the token pass (from highest MAC address down to lowest MAC address). Major

Token

CB

A

Figure 2

errors such as a station detecting another station using the same MAC address will force the offending sta-
tions into an OFFLINE state so they are not part of the ring. Stations can only transmit when they hold the
token. If any station detects the collapse of the logical ring (by not hearing any token passing), that station
will attempt to reinitialise the ring. The ring set up time is short enough (depending on the number of sta-
tions it can be as low as a small number of milliseconds) so that LAN access is not greatly affected in the
event of a collapse and reinitialise.

Apart from the robust nature of the physical bus and the logical ring, the Token Bus LAN allows
deterministic control over the LAN access for each station so that certain and definable minimum times can
be guaranteed. A lot is said about determinism (in a computing sense, as well as theologically and philo-
sophically), but anyone who has experienced a loaded Ethernet will know that whatever determinism is,
Ethernet doesn’t have it. It is widely accepted and widely misunderstood that Ethernet starts to come apart
at the seams at a relatively low load, but as accurate studies have shown, Ethernet stands up well until you
hit about 70%, and then falls apart. Token Bus as a deterministic LAN guarantees that even in the event of
every station wishing to transmit lots of data, no one station will hog the LAN, and every station will be
given a chance to send; moreover, the determinism is under the control of the system designer.

This attribute is a key feature of 802.4, and is a major factor in the choice of 802.4 as the preferred
LAN for real time or mission critical distributed systems. How is this LAN determinism achieved?

The LAN is configured for a specified Target Rotation Time (TRT) in octets; this is the desired maxi-
mum time it takes for a token to complete a full cycle of the logical ring, expressed as the number of octets
transmitted on the LAN, including all preamble and frame control octets. When a station receives the
token, it considers the number of octets that have been transmitted since it received the token last time.
This value (termed the Last Token Rotation Time - LTRT) is compared against the TRT and determines
whether this station can transmit any packets. If a station has no data to transmit, it simply passes the
token, so the minimum token rotation time may be much less than the TRT maximum. However if a station
has transmit packets queued it will only begin the transmission of each if the number of octets that has been
transmitted on the LAN is less than the desired TRT. In other words, every station monitors the traffic vol-
ume, and automatically restricts its LAN usage in the event of congestion. The net effect is an averaging of
available bandwidth to all stations fairly.

As an example, say we have 5 stations, called A, B, C, D and E. The token is passed from
A B C D E. The LAN has a maximum TRT of 2000 octets (not including framing and preamble
octets), and each station is transmitting the following packets every rotation of the token:

Station Packet size count

A 500 1
B 300 2
C 100 2
D 200 1
E - none

The table below details each station’s last measured rotation time, and the number of data octets it
transmits on each rotation.

A B C D E

1 LTRT - - - - -
XMIT 500 600 200 200 0

2 LTRT 1500 1500 1500 1500 1500
XMIT 500 600 200 200 0

3 LTRT 1500 1500 1500 1500 1500
XMIT 500 600 200 200 700

4 LTRT 2200 1700 1400 1600 1400
XMIT 0 300 200 200 700

5 LTRT 1400 1900 1900 1800 2000
XMIT 500 300 100 200 0

6 LTRT 1100 1100 1400 1500 1500
XMIT 500 600 200 200 700

The first two rotations are less than the maximum TRT, so all stations transmit the data they have
queued without delay. On the third rotation station E has a 700 byte packet queued for transmission;
because the measured rotation time is less than the TRT, it sends the packet. However station A now has a
measured rotation time of 2200 octets, and so passes the token without sending any data. Station B has a
measured time of 1700 octets, and so can only transmit one of its two 300 byte packets. Station A gets to
transmit on the next rotation though, whilst station E will miss out, and so on. In effect the transmitting of
the data will average so that the TRT is maintained, but no station is locked out of sending data for more
than one rotation

An even more bewildering factor is added when the Token Bus priority structure is employed. The
Token Bus MAC defines 4 priority levels for all packets, which are termed priority 0, 2, 4 and 6 (priority 0
is lowest, 6 is most favoured). The numbering scheme is derived from the OSI 8 level priority scheme, with
each 802.4 level having two OSI priority levels mapped to it. Each priority level is assigned its own TRT.
Packets on priority level 6 are always transmitted, regardless of the measured rotation time; however a sep-
arate octet counter is kept that is a limit on the amount of time that a station can hold the token for, so it is
impossible for a single station to lock out all other stations. Packets on the lower priority queues are only
transmitted if the TRT for that priority level has not been exceeded. Each station may have packets on all
queues, and stations may be set up with different TRT’s for each priority, so it all gets rather complicated.

Is all this priority stuff useful? What happened to the KISS principle? When seen in the light of 10
Megabit/second Ethernet, and how much data is required to really saturate it, one could be forgiven in
thinking that Token Bus is overly complex, and that if you are pumping that much data into a network,
something is wrong somewhere. The short answer is that Token Bus is just what the doctor ordered for real
time networks, because of the deterministic nature of the LAN. Whilst it is unlikely that current generations
of products can push enough data into a 10 Megabit/second broadband Token Bus to really require tight
control over the prioritisation of data, Token Bus is becoming increasingly common over slower speed net-
works such as 1 Megabit twisted pair, and even down to 100 Kilobit twisted pair. At these speeds, the

priority mechanism is absolutely vital so that maximum control is gained over the limited bandwidth
resource. It guarantees that more important data are sent ahead of less important data, especially at times
when there is a burst of LAN activity (which is often the time when the important data has to get through
fastest).

2. The Target Platform.

Megadata had been working with several customers in the area of embedded distributed control in
hostile environments, where intelligent nodes are dedicated to monitoring and controlling specific items of
plant equipment, and these nodes are networked to provide information and control throughout the plant. It
was vital that these nodes could also operate in the event of total LAN failure, so that automatic control of
the equipment could still take place. One major market is in the electrical substation control area, where
each intelligent node could be attached to a circuit breaker, or a transformer etc, and each node would con-
tain the specific control algorithms necessary to operate the equipment. A major aim was to go beyond the
simplistic dedicated Programmable Logic Controller (PLC) solution into a completely integrated enterprise
wide control environment, where the intelligent nodes were accessible from different types of computing
equipment throughout the entire network. A key element of this strategy was the involvement of Open Sys-
tems, so that customers could integrate new systems from different vendors, and be assured that it could
interoperate with the control system. To do this required the implementation of standard network protocols
at the lowest possible level. The question was, which protocol should be chosen?

Whilst MAP as an Open System as yet to take the world by storm, the 802.4 physical network is very
attractive in hostile environments. Some time ago Megadata developed working implementations of Token
Bus hardware, with the intention of eventually supporting full MAP, or even Mini-MAP. It was soon
realised that a working MAP implementation would require much greater processing power, memory and
other resources than was desirable in an embedded environment. A number of MAP systems already were
in existence, but were usually implemented using a fast, powerful microprocessor such as 68020, and also
required memory in the order of 2 to 3 Megabytes of RAM. Other vendors experienced extremely poor per-
formance (some as low as 2 to 3 Kilobytes of data throughput per second) due to untuned implementations,
slow CPU performance or the heavyweight nature of the protocol overhead. Another major reason not to
use MAP was the problem interconnecting MAP based nodes with more common computing equipment
(such as UNIX† workstations); application level gateways, transport level bridges, dual protocol stacks etc.
all start to cost a lot of time and money.

The platform that Megadata developed for the 802.4 Token Bus was based on an embedded Motorola
68000 processor system, designed for low cost and low power consumption, which was called a Distributed
Interface Unit (DIU). Two basic configurations exist; a larger card for a mid-range series of (now obsoles-
cent) modules, and a smaller version for fitting into a physically compact, low cost range of cards. The
cards were about the size of a large postcard. Each system contained a processor card, one 802.4 controller
card and up to 5 data acquisition cards, all custom designed and built by Megadata.

The processor card contained a maximum of 128 Kb EPROM, 64 Kb RAM and 64 Kb non-volatile
battery backed RAM. The processor was a 68000 running at 7.6 Mhz, which when combined with some
EPROM, didn’t exactly astound anyone with speed. I’m not even sure if it would be fast enough to even
appear on a SPECmark chart (except perhaps at 300 DPI). A rough calculation indicated the processor ran
somewhere about .6 MIPS (if the wind was right).

The 802.4 interface controller card was based on the Motorola 68824 Token Bus Controller (TBC).
The physical LAN interface used a Siemens Carrier Band modem chip. The controller card contained 64
Kb RAM which the main processor and the TBC shared access.

The program space of 128 Kb presented a problem, as this was the total space allowed to hold not
only the multi-tasking operating system and the drivers, but the networking code, the application library
routines and the complete application code. The RAM available was only slightly less restrictive: the pro-
cessor had access to 128 Kb onboard RAM (64 Kb was non-volatile) and 64 Kb offboard. The offboard
RAM was much slower due to bus access timings, and also was shared with the TBC.

† UNIX is a trademark of Bell Laboratories.

It was obvious with the limited memory available that a mini-MAP system (let alone full MAP) was
out of the question. Besides, it would not meet one major goal of easy interconnection with more common
UNIX based computers.

The natural choice (and a much more attractive proposition) was to use TCP/IP on the DIU to both
interconnect DIUs via the Token Bus, and to provide node to node connection to other computing equip-
ment via routers and gateways. And so it was decided to port TCP/IP to the DIU embedded processor sys-
tem. Another goal was to provide a reasonable Application Programming Interface via a UNIX -like real
time embedded operating system, along with a complete Berkeley style networking application interface
(BSD sockets).

Needless to say, this presented a challenge.

Nevertheless, the advantages gained were significant. By using the Berkeley UNIX TCP/IP software,
large amounts of time could be saved by not developing and (more importantly) testing/tuning a custom
TCP/IP implementation. In fact, one goal was to change as little as possible of the BSD code, so that
upgrades or new code could be easily integrated with the existing code. This also opened up the future pos-
sibility of porting the soon to be released BSD 4.4 networking software, which implements the OSI proto-
cols; thus providing a base for developing a dual MAP/IP protocol stack as MAP implementations become
more widespread.

Another major advantage is to be able to utilise application code developed under UNIX directly by
maintaining the same socket API. This would enable Megadata to leverage its coding efforts across a com-
plete range of products, from UNIX workstations down to embedded systems.

Once it was decided that TCP/IP was the networking standard, it was clear that the 802.4 LAN could
easily be internetworked with standard UNIX workstations via 802.4 to Ethernet gateways, or via SLIP
lines, providing a completely homogenous networking environment across the entire product range. The
possibilities were endless.

3. Porting the Software.

A lot of the effort was involved with developing the multi-tasking Unix-like operating system. Over
the last several years Megadata had evolved a basic embedded kernel which fulfilled most of the require-
ments, such as multiple processes, structured device driver interfaces, memory heap management etc. It
looked a lot like UNIX from the programmer’s point of view, only it didn’t have a file system. Since this
OS was not operating on a system with memory management, the process model resembles a single Unix
process running multiple threads. The threads are not pre-emptible, and share the same memory image of
program and data space. The model falls somewhere in between heavyweight UNIX processes, which have
no direct access to other process’s memory image, and true lightweight threads, which are more intimately
connected to each other (e.g. common I/O and signal handling, inter-thread control). They are called
threads for want of a distinguishing term.

Threads can spawn other threads at any time, with the only limitation being available RAM. Each
thread has its own stack and set of file descriptors, and access to the OS services may cause the thread to be
suspended without affecting the other threads. No real signal system is supported, so this simplifies the
handling of threads, also making context switching fast. The OS services such as device drivers, socket
calls etc. are entered as subroutines rather than as system traps (as in a real kernel). Each thread’s context is
maintained in a process control block, which also contains the stack for the thread. The size of this kernel
was less than 10 Kb.

An earlier project required TCP/IP support on Ethernet for an embedded product, so using the exist-
ing kernel as a base, support was added for the socket interface routines and the other support routines
needed for the BSD TCP/IP code. An aim at all times was to minimise the amount of code used, but not to
rewrite large amounts of code. The result is a ‘lean, mean and hungry kernel’, that as a networking OS
complete with drivers, TCP/IP code, and socket interface code, fits under 64Kb of program space and
requires less than 12 Kb RAM (apart from mbuf space). The code breakdown looks something like:

Code Use Size (bytes) % of Total
Vectors/debug-monitor 6730 10.4

Socket/buffering support 12258 19.0

Net I/F support 3628 5.6

Routing 1444 2.2

ARP 2792 4.3

Internet Protocol 13238 20.5

UDP 2026 3.1

TCP 11214 17.4

Operating System 8570 13.3

TBC Driver 2612 4.0

The total program space required was 64512; thus we had at least 64 Kb program space reserved for
application programs, a reasonable amount considering the OS and network services available.

The first generation of the network code used an early release of the netinet 4.3 BSD code, without
any of the net or sys code, so a lot of early work went into developing some simple routines to enable the
basic TCP/IP code to operate. When the complete 4.3 BSD release became available a new version of net-
work code was developed that incorporated the full set of BSD networking code, such as the mbuf routines,
the routing and network interface code.

Some work went into developing an OS interface matching the BSD socket API; standard calls such
as socket, bind, connect, accept etc. are all supported. These routines provide an interface between the
application program and the BSD code actually implementing the calls. The standard BSD code for these
system calls was unusable due to the fact that they are designed to operate on a typical UNIX system call
interface, with a large amount of argument address checking needed to transfer data across the user/kernel
mode boundary. Another interesting side effect of having a shared memory image is that when a system call
such as ioctl is called, normally a library stub routine would be called that would perform a system trap; the
trap handler would then indirectly call the handler for that service after mapping the arguments into the per
process u area. After calling the kernel subroutine the trap handler would perform some signal processing,
check to see if an error had occurred, and finally return from the trap handler to the user code. Rather than
replicating this, the embedded kernel ioctl subroutine would be called directly; the kernel subroutine would
look like this:

ioctl(fd, cmd, data)
int fd, cmd;
caddr_t data;
{
struct file *fp;
int err;

curtask->p_error = curtask->p_return = 0;
if (fp = getf(fd))

{
if (err = (*fp->f_ops->fo_ioctl)(fp, cmd, data))

RETERROR(err);
}

RETURN(curtask);
}

To handle errors in a standard way, two macros are defined: RETERROR, which sets the errno global
to the error number and returns -1, and RETURN, which checks the process control block (pointed to by
curtask) error value p_error, and if zero returns using curtask->p_return as the return value, otherwise per-
forming a RETERR(curtask->p_error). The kernel is then simply a set of subroutines that the

application code calls, simplifying the code and improving the performance considerably.

Some reverse engineering had to be done for those system subroutines that the TCP/IP code called,
and to provide some equivalent stub; generally if the call was not meaningful in the embedded environment
(e.g. suser()) then the call was defined as a dummy macro. When this work was started not a great deal was
known about the internels of 4.3 BSD Unix, and with some judicious poking around in kernels and guess-
work most of the calls were implemented. When The Design and Implementation of the 4.3 BSD Unix
Operating System was finally available, it was absorbed with much interest to see how much we got right
(and to see which bits were luck).

Once the socket interface routines were written and tested, it was fairly easy to port the TCP/IP code
directly. For such a large (> 8000 lines) amount of code, it was suprisingly portable, which is certainly a
tribute to the designers. The only changes that were made was to modify some static data initialisation to
enable the code to be placed in EPROM, and to reduce some table sizes to shrink the RAM usage.

The major difference between the embedded target environment and the UNIX kernel environment is
the lack of hardware memory management. This touched a number of areas in the porting process. One
such area (as mentioned) was the interface between what is typically the user mode and the kernel (pro-
tected) mode. In the usual kernel, the data is transferred via special subroutines that map the user data into
kernel accessible data, which also check for page violation. One such routine is uiomove, which in the
embedded system effectively maps to a simple bcopy. Such a simplification leads to a big win in the area of
performance.

One special area of note is the mbuf memory buffering scheme that virtually all the socket and
TCP/IP code is built around. Mbufs are the coin of the realm for nearly all pieces of data used in the net-
working code, and because of this the issue of memory management policy and implementation is neatly
isolated into a small section of code.

On a normal BSD UNIX kernel, mbufs are allocated from a growing pool of memory pages. When
the current pool is exhausted, new pages are allocated using the mbuf subroutine m_clalloc, which attempts
to allocate new page table entries and obtain extra pages of memory from the system virtual memory allo-
cation subroutines. If the operation fails or the limit of pages is reached, an attempt is made to reclaim
memory by asking the protocol handlers to give up non-essential memory. A separate mbuf page mapping
is maintained at a fixed address (like the u memory area).

At first glance, it looks difficult to fit this into a flat addressed non-memory managed system, but at
closer inspection the mbuf memory can be preallocated using a fixed size at a fixed address. Most of the vir-
tual memory calls can be eliminated, with the exception of just one (rmalloc) which returns a incrementing
page index into the mbuf store. This constrained the mbuf memory to be pre-allocated and of a fixed
length, but all up this wasn’t seen to be disadvantageous. In fact the mbuf scheme has proved to be fast,
efficient and flexible for the processing of network protocol data, so it was very desirable not to re-engineer
the memory management (this would have led to perhaps drastic changes throughout the networking code).

4. Driving the Token Bus.

The Motorola 68824 Token Bus Controller (TBC) was the main component of the controller card.
The TBC is similar to many LAN controllers of the same ilk, being fairly intelligent about chained buffers,
along with the usual share of incorrect documentation, missing documentation, incomprehensible registers
and needing some ‘it works this way, but not that way’ trial and error programming. The 802.4 specifica-
tion is very complex compared to Ethernet, and there exists a large number of magic incantations that you
must speak to the chip to get it to do the right thing.

Newer network interface chips are usually smart when it comes to buffer handling, and the TBC is no
exception. The TBC operates via a pool of free memory descriptors, one type which is assigned for each
complete data packet (containing frame type, MAC addresses etc.), and another type which is a chained list
of memory buffer headers, which point to separate memory buffers. The descriptors are set up so that off-
sets can be used into buffers, allowing LLC headers to be easily added or removed from data frames. The
controller card containing the TBC also had 64 Kb RAM available, which contained the mbuf store; thus
the TBC had direct access to the networking data, minimising the amount of data shuffling. This was a big
win on the performance side, especially when large packets are being sent or received.

One point to note is that the Maximum Transmission Unit (MTU) of 802.4 is 8 Kb, which means that
a large amount of data can be pumped around the net without a lot of protocol overhead; unfortunately this
can also mean a lot of IP fragmentation when gatewaying via SLIP.

5. Some Results.

The first aim of the project was to functionally test the networking code using a Serial Line/Internet
Protocol (SL/IP) connection. This verified the correct operation of the OS and networking code, and also
allowed some measurement of performance on the embedded processor. Next, the TBC driver was devel-
oped. Luckily quite a lot of experimentation had already been performed using the TBC on a Token Bus
network, so a driver was running in a matter of days.

The experimental network was set up as shown in figure 3.

as IP gateway

5 Megabit Carrier

DIU configured

DIUDIU

DIU

HP W/SSun W/S

Server

Annex II
Terminal

Band Token Bus

19.2 Kbaud SL/IP

10 Megabit Ethernet

Figure 3

The use of TCP/IP to interconnect the DIU via SL/IP to a terminal server gateway onto the Ethernet
immediately meant that all the network debugging tools such as ping, ttcp and others could be used from
any workstation on the network. One of the first applications to be developed was a remote login facility
via telnet, which was an excellent proof of concept test. Users could remotely log onto the DIU, and per-
form system configuration, examine statistics and monitor operation, all from the comfort and safety of
their workstation. An example session is shown below:

noah% telnet map102
Trying 192.73.12.1 ...
Connected to map102.
Escape character is ’ˆ]’.
Megadata DIU Site configuration details

Software date : Tue Apr 2 13:01:44 EST 1991
gateway : 192.55.99.31
station-address : 192.73.12.1
Free memory : 64642
MD1: help
SIte Site configuration
SCanlist Module scanlist
MONitor Enter Debug monitor
MAp TBC/LAN monitoring
Connect ad ... Connect to another DIU
ARp Display ARP tables
If Display interface summary
NEt Display network connections
MBuf Display mbuf stats
Ping Ping host
LCR Display LCR status
DIU: if
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 1536 127.0.0.0 127.0.0.1 0 0 0 0 0 0
tbc0 8173 192.73.12.0 192.73.12.1 77874 0 15681 0 0 0
sl0 1006 192.55.99.31 192.73.12.1 856228 0 856425 0 0 0
DIU:
DIU: ˆ]
telnet> quit
Connection closed.
noah%

Further measurements indicated that a basic Remote Procedure Call (RPC) between two DIU’s took
between 5 and 10 milliseconds, which was pleasantly surprising given the capabilities of the CPU. A oper-
ational system that implements a complete substation control environment has been developed and is due to
be installed at sites throughout Western Sydney, and in tests has shown to be capable of high speed control,
data acquisition and monitoring, and yet has sophisticated facilities for connection to a Wide Area Network
via TCP/IP, remote login to any DIU from any other node, and can be connected to any equipment that sup-
ports TCP/IP. The performance is entirely due to the distributed nature of the system, and to the fact that
TCP/IP is a fast and lightweight protocol stack.

In such a system it is possible to build an enterprise wide network based on Open Systems protocols
which interconnects the largest mainframes with the smallest embedded nodes; and if the network were
attached to the Internet, you may be blaming power outages on worms instead of storms.

6. Future Applications.

A number of improvements are being investigated at the present time.

It is envisaged that the IP priority option values can be directly mapped to the 802.4 priority scheme,
so that the application has direct control over the priority of the data being sent.

To further enhance the facilities available, the Sun Microsystems’s RPC/XDR remote procedure call
system will be ported, providing applications with a sophisticated and powerful RPC mechanism. Also in
the pipeline is an SNMP agent using the standard MIB for 802.4 Token Bus interfaces, so that each node
can be managed using standard network management tools.

A version of the DIU is developed that will operate on twisted pair at 1 Megabit; this will reduce the
connection cost for each node, and also reduce the cabling cost. An Ethernet controller card is operational,
which allows a much faster gateway between 802.4 and Ethernet to operate. The logical outcome is that
Token Bus networks can be internetted to other networks, and IP packets routed across the gateway rather
than slow application bridges performing data conversions. Thus it would be possible to closely link the

UNIX workstation world with the factory floor environment, facilitating a wide range of technology and
computing power to control applications, was well as delivering data to MIS databases. Once MAP
becomes more widespread, transport layer bridges could be used to provide a migration path for older sys-
tems.

Some investigation is under way to provide a smaller, cheaper node based on current generation
embedded processors, such as the Intel i960SA/SB, which provides powerful CPU performance and float-
ing point in a single chip designed for the embedded environment.

The ultimate goal of employing Open Systems standards is to allow users to preserve their invest-
ment (hardware and applications) by easily and simply interconnecting computing equipment and software
from a range of vendors. Whilst this is starting to become a reality in the workstation and general comput-
ing fields, it is unheard of in the the real time field. What should be happening is for vendors of control and
plant equipment building in Open Systems connectivity into products e.g. when a manufacturer sell a cir-
cuit breaker, it comes with a standard LAN connection, allowing the installer to simply plug the equipment
onto the control LAN and immediately integrate it into the control network.

7. Conclusion.

The use of TCP/IP as an Open System protocol suite on the IEEE 802.4 Token Bus LAN in the real
time embedded control area has proved to be a success, displacing proprietary protocols. The use of a stan-
dard LAN means that, in time to come, the physical and logical interconnection of different vendor’s equip-
ment will be easier. The porting of TCP/IP to 802.4 provides a fast and efficient networking standard
which can operate on a limited hardware platform, whilst still maintaining the numerous advantages of a
common networking foundation across a complete range of computing environments.

