United States Patent

US006785843B1

(12) (10) Patent No.: US 6,785,843 B1
McRae et al. 5) Date of Patent: Aug. 31, 2004
(54) DATA PLANE RESTART WITHOUT STATE 6,463,550 Bl * 10/2002 Cepulis et al. 714/25
CHANGE IN A CONTROL PLANE OF AN 6,601,186 B1 * 7/2003 Fox etal.cccovvrenninne. 714/4
INTERMEDIATE NETWORK NODE OTHER PUBLICATIONS
(76) Inventors: Andrew McRae, 21 Glencoe Close, U.S. patent application Ser. No. 09/791,251, Roumas.
Berowra NSW 2081 (AU); Johannes
Markus Hoerler, 113 Ashwyn Ct., * cited by examiner
Cary, NC (US) 27511
Primary Examiner—Scott Baderman
(*) Notice: Subject to any disclaimer, the term of this Assistant Examiner—Anne L. Damiano
patent is extended or adjusted under 35
U.S.C. 154(b) by 505 days. 7 ABSTRACT
A system and technique restarts a data plane of an interme-
(21) Appl. No.: 09/792,249 diate node, such as an aggregation router, of a computer
S network without changing the state of a control plane in the
(22) Filed: Feb. 23, 2001 router. The aggregation router comprises a control plane that
(51) Int. CL7 oo, GO6F 11/00 includes a supervisor processor configured to manage traffic
(52) US. Cl oot 714/23; 4/43 forwarding operations of the node. To that end, the super-
(58) Field of Searchc.ccocccceneeneee 714/4, 23, 43; visor processor maintains a current state of the control plane
719/321, 327 ’717’/127’ pertaining to, e.g., routing protocols and interface states of
’ ’ line cards within the router. The aggregation router further
(56) References Cited comprises a data plane that includes hardware components,
such as a forwarding engine, configured to perform forward-
U.S. PATENT DOCUMENTS ing operations for data forwarded by the router.
5,636,341 A * 6/1997 Matsushita et al. 714/13
6,332,198 B1 * 12/2001 Simons et al.cc......... 714/6 33 Claims, 7 Drawing Sheets
-~ 400
RPMCDULE 472
ROUTE PROCESSOR MEMORY
474 ‘1 [' 478
SYSTEM CONTROLLER 476
PRE FP MODULE
470 FORWARDING 452
ENGINE 454
PACKET
BACKPLANE IQEERFACE LocIC BUFFER 456_
INTERFACE CIRCUITRY 490b PACKET 458
- []]
40~ | 442 442-‘" -~ 442 442
INTERFACE INTERFACE INTERFACE
410 ~—v CIRCUITRY CIRCUITRY CIRCUITRY
490a *ee 490a o 4%0a
INPUT LINE OUTPUT LINE INPUT LINE
CARD 412 CARD 416 CARD 412
414 4187 4147
SUBSCRIBERS INTERNET SUBSCRIBERS
160 250 160

US 6,785,843 B1

Sheet 1 of 7

Aug. 31, 2004

U.S. Patent

0ct

002 NIVWOQ
dSI 05}

JAON
JLVIGIWHILNI

oel

00}

091 NIVAOQ
NOILVZINYOHO

091 NIVNOd
NOILVZINVOXO

14V d0idd
| Ol

0S1
300N

J1VIGINYILNI 09} NIVNOQ
021~ NOLLYZINYONO

_

04} Okl
300N| |3aoN
E an3

US 6,785,843 Bl

Sheet 2 of 7

Aug. 31, 2004

U.S. Patent

13V HOldd
¢ Old

(44

0S¢ 13NY3LNI

09}
NIYWOQ
43g9RI0SANS

US 6,785,843 Bl

€ Old
1/
012 022
001
SY3AIM0SENS % S
> Ol ~
- |
3 0z sdOd
=]
; o o
Sy3aNOSANS % SNOILOINNOD
z oL NYM
i 012 022
Y
E 091
SH3aOSANS <~ S
oL s =~ -
~ 00¢

U.S. Patent

US 6,785,843 Bl

Sheet 4 of 7

Aug. 31, 2004

U.S. Patent

00y

A 0oL v A 052 v ﬁ 09} v
Sy3aDSANS 13INYILNI SY3AOSEANS
Z N H Vil H viy
2Ly QUVD 9Ly QYYD 2Ly QuYD
¥ "ol 3NIT NN aNIT LNdLNO 3NIT LGN
06y eo6y B06Y
AMLINDYID ANLINDYID aLnou ||« 0
JOVALNI JOV4ILNI Elo) ZNEILY]
f A A
| 4 A e B k4 4 A \(oA
05 1I0vd 4067 AYLINDYID IOVAYIINI
_ - 08P
95y ¥344Nn8
e 219071 w_oimﬂz_ INVIdIOVE
2cp ¥y INIONT -
_ 0O dd ONIQYYMEO4 -0y
_E Y3 TIOHUINOD WILSAS |
8Ly b Ly
AMOWIN HOSS3IO0Yd 3LN0Y
2% IINAOW dH y

US 6,785,843 Bl

Sheet 5 of 7

Aug. 31, 2004

U.S. Patent

G oOld
0l Q¥VD 3aNN Obb QMY ANN
ooy G2y
WILSAS W3LSAS
ONILYN3dO I ONILV¥3dO
REN a¥vD AN
0zy 0zy
HOSSIO0HONIIN HOSSIN0UONIIN
25 IINCON d4
08 01907 NN
30V4YIINI INVIdNOVE ONTMRO4
066~ Y5~
A
9/p HITIONINOD WILSAS
bly
500 W3LSAS
uy ONILYY3dO ¥2LNOY mowmmwm&
31NAOW
s Y
005

US 6,785,843 Bl

Sheet 6 of 7

Aug. 31, 2004

U.S. Patent

0v9 NOIO3Y 3000

659
H3TANVH NOILd3OX3

059 Y¥3ARA 44

O14103dS - WHO4L1Y1d

INV'1d
TOULNOD

POEY 20€9 q0e9 BOES
IN3ND IN3ND IN3IMNo IN3ID
dd dd dd dd
919 ¥i9 49
819 (ald) (814) (a1d)
4dSO | | ONIHOLIMS | | ONIQUYMYOL | | ONIGHYMYOS
ov1 1SVOILTNN di 1SVYIINN di

009 W3LSAS ONILVHIHO ¥31N0Y

019 NOIO3Y 300D INIANIJIANI - WHOILY1d

L Old

US 6,785,843 Bl

NOILd30X3

e avo13y TVANVIN

1Yv1S3y 01NV
d0 VNNV

3137dWNOD
NOILVZIVILINY
IN3ITO

Sheet 7 of 7

Aug. 31, 2004

3137dWO2
/7 1353

U.S. Patent

US 6,785,843 B1

1

DATA PLANE RESTART WITHOUT STATE
CHANGE IN A CONTROL PLANE OF AN
INTERMEDIATE NETWORK NODE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present invention is related to the following
co-pending and commonly assigned U.S. patent application
Ser. No. 09/791,251 filed on Feb. 23, 2001, titled, Message
Aggregator for Channelized Interface Programming, which
was filed on even date herewith and assigned to the assignee
of the present invention.

FIELD OF THE INVENTION

The present invention relates to intermediate nodes of a
communications network and, in particular, to the infrastruc-
ture of an intermediate node, such as an aggregation router,
used in a communications network, such as a computer
network.

BACKGROUND OF THE INVENTION

A computer network is a geographically distributed col-
lection of interconnected communication links and segments
for transporting data between nodes, such as computers.
Many types of network segments are available, with the
types ranging from local area networks (LAN) to wide arca
networks (WAN). For example, the LAN may typically
connect personal computers and workstations over
dedicated, private communications links, whereas the WAN
may connect large numbers of nodes over long-distance
communications links, such as common carrier telephone
lines. The Internet is an example of a WAN that connects
disparate networks throughout the world, providing global
communication between nodes on various networks. The
nodes typically communicate over the network by exchang-
ing discrete frames, cells or packets of data according to
predefined protocols. In this context, a protocol consists of
aset of rules defining how the nodes interact with each other.

Computer networks may be further interconnected by an
intermediate network node, such as a switch or router,
having a plurality of ports that may be coupled to the
networks. To interconnect dispersed computer networks
and/or provide Internet connectivity, many organizations
rely on the infrastructure and facilities of Internet Service
Providers (ISPs). ISPs typically own one or more backbone
networks that are configured to provide high-speed connec-
tion to the Internet. To interconnect private networks that are
geographically diverse, an organization may subscribe to
one or more ISPs and couple each of its private networks to
the ISP’s equipment. Here, the router may be utilized to
interconnect a plurality of private networks or subscribers to
an IP “backbone” network. Routers typically operate at the
network layer of a communications protocol stack, such as
the internetwork layer of the Transmission Control Protocol/
Internet Protocol (TCP/IP) communications architecture.

Simple networks may be constructed using general-
purpose routers interconnected by links owned or leased by
ISPs. As networks become more complex with greater
numbers of elements, additional structure may be required.
In a complex network, structure can be imposed on routers
by assigning specific jobs to particular routers. A common
approach for ISP networks is to divide assignments among
access routers and backbone routers. An access router pro-
vides individual subscribers access to the network by way of
large numbers of relatively low-speed ports connected to the

10

15

20

25

30

35

40

45

50

55

60

65

2

subscribers. Backbone routers, on the other hand, provide
transports to Internet backbones and are configured to pro-
vide high forwarding rates on fast interfaces. ISPs may
impose further physical structure on their networks by
organizing them into points of presence (POP). An ISP
network usually consists of a number of POPs, each of
which comprises a physical location wherein a set of access
and backbone routers is located.

As Internet traffic increases, the demand for access routers
to handle increased density and backbone routers to handle
greater throughput becomes more important. In this context,
increased density denotes a greater number of subscriber
ports that can be terminated on a single router. Such require-
ments can be met most efficiently with platforms designed
for specific applications. An example of such a specifically
designed platform is an aggregation router. The aggregation
router is an access router configured to provide high quality
of service and guaranteed bandwidth for both data and voice
traffic destined for the Internet. The aggregation router also
provides a high degree of security for such traffic. These
functions are considered “high-touch” features that neces-
sitate substantial processing of the traffic by the router. More
notably, the aggregation router is configured to accommo-
date increased density by aggregating a large number of
leased lines from ISP subscribers onto a few trunk lines
coupled to an Internet backbone.

The infrastructure of a typical router comprises functional
components organized as a control plane and a data plane.
The control plane includes the functional components
needed to manage the traffic forwarding features of the
router. These features include routing protocols, configura-
tion information and other similar functions that determine
the destinations of data packets based on information other
than that contained within the packets. The data plane, on the
other hand, includes functional components needed to per-
form forwarding operations for the packets.

For a single processor router, the control and data planes
are typically implemented within the single processor.
However, for some high performance routers, these planes
are implemented within separate devices of the intermediate
node. For example, the control plane may be implemented in
a supervisor processor, such as a route processor, whereas
the data plane may be implemented within a hardware-assist
device, such as a co-processor or forwarding processor. In
other words, the data plane is typically implemented in a
specialized piece of hardware that is separate from the
hardware that implements the control plane.

For implementations that require high availability, the
data plane tends to be generally simple in terms of its
organization and functions of the hardware and software.
That is, the forwarding processor may be configured to
operate reliably by reducing the complexity of its functional
components. In contrast, the control plane tends to be more
complex in terms of the quality and quantity of software
operating on the supervisor processor. Failures are thus more
likely to occur in the supervisor processor when executing
such complicated code. In order to ensure high availability
in an intermediate network node, it is desirable to configure
the node such that if a failure arises with the control plane
that requires restarting and reloading of software executing
on the supervisor processor, the data plane continues to
operate correctly. An example of such a high availability
intermediate node is an asynchronous transfer mode (ATM)
switch having a relatively simple switch fabric used to
forward ATM cells from its input interfaces to output
interfaces.

However, high-performance routers have evolved to
where their data planes have become more complex in terms

US 6,785,843 B1

3

of software executing on their forwarding processors. This
has increased the possibility of fatal errors arising in the
forwarding processors that, in turn, halt forwarding of data
traffic in the data planes. In a situation where a fatal error is
detected in the data plane hardware or software, thereby
requiring a reset and restart of the forwarding processor, the
conventional approach is to restart the entire router includ-
ing a restart of the control plane. Yet restarting of the entire
router takes a relatively long period of time, e.g., on the
order of minutes.

Specifically, restarting of the control plane requires
reloading of an operating system executing on the supervisor
processor, as well as reinitializing that operating system to
a point where it acquires its necessary state. For example,
re-initialization of the operating system includes acquiring
lost dynamic state, such as routing protocol state informa-
tion. A control plane restart is thus “visible” to neighboring
routers as a topology change in the network that requires
those neighbors having “knowledge” of the network to
re-compute their routing databases when the restarted router
is back online. In addition, the router must re-establish
connections with its neighbors and exchange routing data-
bases with those neighbors so as to “converge” its routing
database. As noted, such activity consumes an excessive
amount of time and the present invention is directed to a
technique that addresses this problem.

SUMMARY OF THE INVENTION

The present invention comprises a system and technique
for restarting a data plane of an intermediate node, such as
an aggregation router, of a computer network without chang-
ing the state of a control plane in the router. The control
plane includes a supervisor processor, such as a route
processor, configured to manage traffic forwarding opera-
tions of the node. To that end, the route processor maintains
a current state of the control plane pertaining to, e.g., routing
protocols and interface states of line cards within the router.
The aggregation router further comprises a data plane that
includes hardware components, such as a forwarding engine,
configured to perform forwarding operations for data for-
warded by the router.

According to an aspect of the inventive technique, when
the route processor detects a fatal error in the data plane,
e.g., via an exception condition reported by data plane
hardware, it restarts only the data plane without changing the
state of the control plane. That is, the route processor resets
the hardware components of the data plane, reloads software
into those appropriate components and then resynchronizes
the forwarding engine with state information stored in the
control plane that is relevant to the data plane, e.g., the
interface states of the line cards.

According to another aspect of the inventive technique,
independent software modules, or clients, logically interact
with “reset” software code of an operating system so that
only the relevant portions of the code that control the data
plane are executed. In response to detection of a fatal error
by the control plane, driver software executing on the route
processor notifies these clients, e.g., via registered call back
functions, about the error. An exception handler routine is
then invoked to resolve the error. Meanwhile, the clients
terminate further attempts to access the data plane hardware
while it is in an exception state.

After the error condition is resolved, the route processor
resets the data plane hardware, reloads the software (i.e.,
micro-code) executing on the forwarding engine and resyn-
chronizes the state stored on the control plane with relevant

10

15

20

25

30

35

40

45

50

55

60

65

4

state needed by the data plane. The clients are then notified
that the data plane hardware may once again be accessed and
those clients proceed to download their specific configura-
tion information into the forwarding engine. After the data
plane is restarted, data traffic begins to flow through the
forwarding engine.

An advantage of the data plane restart invention is that
state information maintained on the control plane is pre-
served. Thus, resetting and restarting of the data plane can
be performed in a few seconds rather than several minutes
needed to reacquire the state information in order to restart
the entire aggregation router, including the control plane. In
addition, the router is still considered an active intermediate
node to its neighboring routers in the network even though
the data traffic forwarded to the router does does not flow
through the data plane. This aspect of the invention obviates
the need to recompute and re-converge forwarding databases
in the network.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which like
reference numerals indicate identical or finctionally similar
elements:

FIG. 1 is a schematic block diagram of a network includ-
ing a collection of communication links and segments
organized into a plurality of subscriber domains coupled to
an Internet service provider (ISP) domain;

FIG. 2 is a schematic block diagram of an ISP domain
comprising a plurality of interconnected access and back-
bone routers;

FIG. 3 is a schematic block diagram of an illustrative
embodiment of an ISP point of presence (POP) that may be
advantageously used with the present invention;

FIG. 4 is a schematic block diagram of an aggregation
router that may be advantageously used with the present
invention;

FIG. 5 is a schematic block diagram illustrating a func-
tional infrastructure of the aggregation router of FIG. 4;

FIG. 6 is a functional block diagram illustrating an
architecture of an operating system that may be advanta-
geously used with the present invention; and

FIG. 7 is a state diagram illustrating various events and
defined states in accordance with the present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

FIG. 1 is a schematic block diagram of a computer
network 100 comprising a collection of communication
links and segments connected to a plurality of nodes, such
as end nodes 110 and intermediate nodes 150. The network
links and segments may comprise local area networks
(LANs) 120 and wide area network (WAN) links 130
interconnected by intermediate nodes 150, such as network
switches or routers, to form an internetwork of computer
nodes. These intemetworked nodes communicate by
exchanging data packets according to a predefined set of
protocols, such as the Transmission Control Protocol/
Internet Protocol (TCP/IP). It should be noted that other
techniques/protocols, such as the Hypertext Transfer Proto-
col (HTTP), may be advantageously used with the present
invention.

To interconnect their dispersed private computer net-
works and/or provide Internet connectivity, many organiza-

US 6,785,843 B1

-

d

tions rely on the infrastructure and facilities of Internet
service providers (ISPs) rather than purchase and configure
the necessary equipment themselves. In the illustrative
embodiment, the computer network 100 is organized into a
plurality of domains, including organization domains 160 of
private networks coupled to an ISP domain 200. An orga-
nization 160 may subscribe to one or more ISPs 200 and
couple each of its private networks to the ISP’s equipment.
FIG. 2 is a schematic block diagram of an ISP domain 200
comprising a plurality of interconnected access and back-
bone routers 210, 220. The access routers 210 connect the
individual organization or subscriber domains 160 to the
backbone routers 220 via relatively low-speed ports con-
nected to the subscribers. The backbone routers 220 are
interconnected by WAN links 130 to form one or more
backbone networks 230 configured to provide high-speed,
high-capacity, wide area connectivity to the Internet, repre-
sented herein as Internet cloud 250.

An ISP domain 200 may be further organized into points
of presence (POP), each of which comprises a physical
location wherein a set of access and backbone routers is
located. FIG. 3 is a schematic block diagram of an illustra-
tive embodiment of a POP 300 that may be advantageously
used with the present invention. The POP 300 comprises a
plurality of backbone routers 220 coupled to access routers
210 equipped with redundant trunk connections. The use of
more than one backbone router enhances network
availability, as does the use of redundant trunk connections
on the access routers. The backbone routers 220 and access
routers 210 are maintained separately so that backbone
router configuration can be Kkept relatively stable over time.
Backbone routers are not affected when individual subscrib-
ers add or remove value-added services or when individual
subscribers are added to or removed from the access routers
210. In addition, access routers can be added as new
subscribers are brought onto the network.

As Internet traffic increases, the demand for access routers
210 to handle increased density, and backbone routers 220
to handle greater throughput, becomes more important.
Increased density denotes a greater number of subscriber
ports that can be terminated on a single access router. An
aggregation router is an access router configured to accom-
modate increased density by aggregating a large number of
leased lines from ISP subscribers onto a few trunk lines
coupled to an Internet backbone. That is, the aggregator
essentially functions as a large “fan-in” device wherein a
plurality of relatively low-speed subscriber input links is
aggregated onto at least one high-speed output trunk to a
backbone network of the Internet.

FIG. 4 is a schematic block diagram of an aggregation
router 400 that may be advantageously used with the present
invention. The aggregation router comprises a plurality of
line cards 410 coupled to at least one performance routing
engine (PRE 470) via a unidirectional (i.e., point-to-point)
interconnect system 440. The line cards 410 include a
plurality of input cards 412 having input ports 414 coupled
to subscribers 160 and at least one output “trunk” card 416
configured to aggregate the subscriber inputs over at least
one output port 418. The PRE 470 is an assembly compris-
ing a fast packet “forwarding” processor (FP) module 452
and a route processor (RP) module 472 adapted to perform
packet forwarding and routing operations, respectively. The
FP and RP modules are preferably interconnected in a
“mezzanine” arrangement to form the PRE 470. The PRE
assembly also provides quality of service (QoS) functions
for complete packets received from each input line card over
the interconnect system. To that end, the interconnect system

10

15

20

25

30

35

40

45

50

55

60

65

6

440 comprises a plurality of high-speed unidirectional links
442 coupling the PRE to each line card 410.

The RP module 472 is a processor-based, routing system
suite comprising functionality incorporated within a typical
router. That is, the RP module comprises a general-purpose
processor 474 (e.g., a MIPS route processor) coupled to a
system controller 476 and memory 478. The memory 478
comprises synchronous dynamic random access memory
(SDRAM) storage locations addressable by the processor
474 for storing software programs and data structures
accessed by the components. A network routing operating
system, portions of which are typically resident in memory
and executed by the route processor, functionally organizes
the router by, inter alia, invoking network operations in
support of software processes executing on the router. The
route processor 474 is configured to construct and load
routing tables used by the FP module 452. The processor 474
also performs configuration management functions of the
aggregation router 400 and communicates with neighboring
peer routers to exchange protocol data units used to con-
struct the routing tables in accordance with conventional
routing algorithms. It will be apparent to those skilled in the
art that other memory means, including various computer
readable media, may be used for storing and executing
program instructions pertaining to the operation of the
router.

The FP module 452 is responsible for rendering forward-
ing decisions for the aggregation router and, to that end,
includes a forwarding engine 454 (such as an arrayed
processing engine) coupled to a high-performance back-
plane interface logic circuit 480. The forwarding engine 454
is preferably embodied as two high performance, application
specific integrated circuits (ASICs) having a plurality of
processors arrayed as four (4) rows and eight (8) columns in
a 4x8 arrayed configuration, wherein each column is
coupled to a FP memory. However, it will be understood to
those skilled in the art that other arrayed configurations, such
as an 8x2 or 8x8 array, may be used in accordance with the
present invention. The forwarding engine 454 essentially
comprises the entire forwarding path functionality of the
aggregator.

Interface circuitry 490 coupled to the ends of the unidi-
rectional links 442 is resident on both the line cards 410 and
the backplane logic circuit 480. The backplane logic circuit
480 is also preferably embodied as a high performance
ASIC, hereinafter referred to as the Cobalt ASIC, which is
configured to further interface the line cards to a packet
buffer 456 of the FP module. The packet buffer 456 is a
memory used to store packets 458 as the forwarding engine
454 determines where and when they should be forwarded
within the aggregation router. For example, the packet buffer
may be used to store low priority data packets while high
priority, low latency voice packets are prioritized by the
forwarding engine to an output card (e.g., the trunk card
416) of the aggregation router. An example of a backplane
logic circuit that may be advantageously used with the
present invention is disclosed in co-pending and commonly-
owned U.S. patent application Ser. No. (112025-0438) titled
High Performance Interface Logic Architecture of an Inter-
mediate Network Node, which application is hereby incor-
porated by reference as though fully set forth herein.

The aggregation router 400 illustratively includes sixteen
(16) line cards 410, each of which may be configured for an
OC-12 (622 Mbps) data rate. Thus, the point-to-point links
442 coupled to the line cards must be capable of supporting
such data rates. An interconnect protocol is provided that
enables encoding of packets over the point-to-point links of

US 6,785,843 B1

7

the interconnect system to thereby limit the bandwidth
consumed by overhead when transmitting the packets within
the aggregation router. An example of an interconnect pro-
tocol that may be advantageously used with the present
invention is disclosed in co-pending and commonly-owned
U.S. patent application Ser. No. 09/791,062 filed Feb. 22,
2001, titled High Performance Protocol for an Interconnect
System of an Intermediate Network Node, which application
is hereby incorporated by reference as though fully set forth
herein.

The interface circuitry 490 includes interconnect ports
coupled to the point-to-point links 442 of the interconnect
system 440 and implements a unidirectional, point-to-point
clock forwarding technique that is configured for direct
ASIC-1t0-ASIC transmission over a backplane of the aggre-
gation router. As a result, the interface circuitry 490a resi-
dent on the line cards 410 is preferably embodied within a
high-performance ASIC, hereinafter referred to as the
Barium ASIC, whereas the interface circuitry 490b is resi-
dent on the Cobalt ASIC. The interface circuitry generally
converts conventional formats of data received at the line
cards 410 to a protocol format for transmission from, e.g.,
the Barium ASIC over the interconnect system 440 to the
Cobalt ASIC. The ASICs also include circuitry to perform
cyclic redundancy code (CRC) generation and checking on
packets, along with interconnect format checking.

FIG. 5 is a schematic block diagram illustrating the
functional infrastructure 500 of the aggregation router. A
line card operating system 425 executes on miCroprocessors
420 of the line cards 410 and a network routing operating
system 600 executes on the route processor 474 of the RP
module 472. An example of a network routing operating
system that may be advantageously used with the present
invention is the Internetworking Operating System (I0S),
whereas an example of a line card operating system is LC
DOS, both of which are available from Cisco Systems Inc.
LC DOS is a “light weight” version of Cisco IOS® that is
optimized for line card operation and that includes a built-in
interprocessor communication (IPC) mechanism along with
an on-line insertion and removal (OIR) mechanism config-
ured to provide resiliency in a line card environment.

The line card operating system 425 provides maintenance
functions for the hardware components of the line cards and
communicates with the router operating system to exchange
configuration information along with statistics reporting and
event/alarm notification. General images of the line card
operating system reside within the router operating system.
When a new image of the router operating system is booted,
a determination is made whether the version of the line card
operating system executing on the line cards is the same as
the current version residing on the router operating system.
If not, the router operating system downloads the current
image of the line card operating system to the line cards. The
line card operating system is a “self loading” operating
system in that each instance of the system that is running on
the line cards includes a loader function that facilitates
automatic, efficient downloading of images over a backplane
Ethernet (BPE) connection 530 from the router operating
system.

Broadly stated, the functional infrastructure of the aggre-
gation router is divided into a data plane and a control plane.
The data plane includes components used to retrieve data
packets from the network and provide those packets to the
PRE (and vice versa). To that end, the data plane extends
from the ports 414, 418 on the line cards through the Barium
ASICs over the interconnect system 440 to the Cobalt ASIC
and ultimately to the forwarding engine 454 of the FP

10

15

20

25

30

35

40

45

50

55

60

65

8

module 452. In contrast, the control plane includes those
entities used to manage/control traffic forwarding operations
of the aggregation router and, to that end, extends from the
microprocessors 420 on the line cards 410 over the BPE 530
to the route processor 474 on the RP module 472. Notably,
the line card microprocessors 420 generally do not have
access to the data plane in order to send information to the
RP module through the FP module. Moreover, the data plane
is used primarily for transporting data packets between the
line cards and the PRE, although some control information
(e.g., flow control) relating to control external to the aggre-
gation router may flow over the data plane.

In sum, the infrastructure of the aggregation router
includes distributed microprocessor entities resident on the
line cards that perform local processing and interfacing to
the physical port circuitry on the line cards, but that do not
have direct access to the route processor over the data plane.
The software architecture of the aggregator includes layer-
ing that provides separation between low-level functionality
on the line cards (e.g., a specific interface chip, such as a
channelized controller at the physical port circuitry) and
high-level generic functions of the router operating system
on the RP module. This separation layer of the software
architecture provides a distinct interface between a generic
software layer of the router operating system and the physi-
cal port interface layer of the router.

The present invention comprises a system and technique
for restarting the data plane of the aggregation router with-
out changing the state of the control plane in the router. The
route processor maintains a current state of the control plane
pertaining to, e.g., routing protocols and interface states of
line cards within the router. Broadly stated, the invention
provides the ability to reset the forwarding engine of the data
plane, including re-downloading of software and restarting
of the processors, without having to reset the operating
system. Restarting of only the FP module within the aggre-
gator is possible because the ability to acquire and distribute
configuration information between the line cards and the RP
module is independent of the forwarding path of the router.
By removing the forwarding path from the control plane,
hardware faults that are detected in the forwarding engine
can be resolved (i.e., by restarting the forwarding engine)
without having to restart the route processor and operating
system. As noted, restarting of the forwarding engine hard-
ware is much quicker and efficient than having to restart the
entire router.

FIG. 6 is a functional block diagram illustrating the
architecture of the router operating system 600 (e.g., Cisco
I0S) that is configured to reset and resynchronize the data
plane 670 of the aggregation router 400 without affecting
(changing) state information stored in the control plane 620
of that router. The operating system 600 is functionally
divided into a generic, platform-independent code region
610 that runs on any router platform and a platform-specific
code region 640, including drivers, that “hook™ the generic
code into the specific platforms used to implement the
operating system.

In the illustrative embodiment, the platform-specific code
region 640 includes a FP driver 650 configured to operate
with the forwarding engine 454 of the data plane 670 used
in the aggregation router. The operating system 600 includes
a plurality of specialized pieces of code or FP clients 630
that reside between the generic region 610 and the platform-
specific region 640 of the operating system 600. The FP
clients interact with the FP driver 650 to essentially translate
software representing generic functions of the operating
system into platform-specific format for use by the FP driver.

US 6,785,843 B1

9

The software code downloaded by the FP driver into the
forwarding engine 454 is a binary, assembly language image
or FP micro-code 660 adapted for execution by processors
of the forwarding engine 454.

Preferably, the FP micro-code 660 is compiled into the
operating system and comprises initialization code and
operational code that implements functions of the operating
system. Initially, the initialization code is downloaded into
instruction memories of the processors within the forward-
ing engine for execution by the processors. The operational
code is initially loaded into FP memories associated with the
forwarding engine and, at a point in time directed by the
route processor 474 after the initialization code has
executed, the code is then loaded into the instruction memo-
ries of the processors. The FP memories also store initialized
data downloaded from the operating system of the control
plane.

The micro-code 660 is illustratively organized as bundles
of precompiled coded segments in a binary file format that
are downloaded over a conventional peripheral computer
interconnect (PCI) bus 540 from the RP module 472 into the
FP memories associated with the forwarding engine. The
PCI bus is also used for communication between the route
processor 474 on the RP module 472 and the forwarding
engine 454 on the FP module 452. In addition, the PCI bus
enables communication between the route processor and the
Cobalt ASIC to, inter alia, access registers needed to “start”
the interconnect system 440 and gather statistics. Thus, the
PCI bus 540 provides a mechanism whereby both control
and data information may be exchanged between the RP and
FP modules.

Within the generic code region 610 of the operating
system 600, there are further pieces of code that are used to
build forwarding information base (FIB) tables subsequently
downloaded by the FP driver 650 into the forwarding engine
for use by the FP micro-code 660. Examples of these various
pieces of code include IP unicast forwarding code 612, IP
multicast forwarding code 614 and tag switching code 616.
Each of these “features” of the operating system has an
associated FP client 630 that “owns” the corresponding FIB
table in memory of the forwarding engine 454. Apportion-
ment of the operating system into various features results in
the development of software modules that essentially
increases the reliability of the operating system. The Cisco
10S operating system is an example of a modular operating
system that, as noted, may be advantageously used with the
present invention. The advantage of developing separate
modular features of the operating system is realized by a
defined application programming interface (API) mecha-
nism that allows the various modules to communicate with
other portions of the operating system code.

For example, OSPF code 618 executing within the
generic code region 610 of the operating system 600 builds
a routing table that is translated by a FP client 6304 into a
format for use by the FP micro-code 660 executing on the
forwarding engine 454. The FP client 630d and FP driver
650 cooperate to download the table contents to the for-
warding engine. When the forwarding engine requires
restart in response to, e.g., detection of a fatal error by the
route processor 474, certain hardware on the FP module 452
is temporarily unavailable. Accordingly, the FP client 6304
is instructed to cease downloading of further updates to the
OSPF FIB table. After the FP hardware has been
reinitialized, the FP client is instructed to download the
entire OSPF FIB table into the forwarding engine 454
because, as result of re-initialization, the engine is in essen-
tially a “virgin” state. The FP driver 650 issues these

10

15

20

25

30

35

40

45

50

55

60

65

10

instructions to the FP client 630d through call back functions
of the API mechanism.

According to an aspect of the inventive technique, when
the route processor detects a fatal error in the data plane,
e.g., via an exception condition/state reported by data plane
hardware, it restarts only the data plane without changing the
state of the control plane. That is, the route processor resets
the hardware components of the data plane, reloads software
into those appropriate components and then resynchronizes
the components (i.c., the forwarding engine) with state
information stored in the control plane that is relevant to the
data plane, e.g., the interface states of the line cards. The
fatal error in the data plane 670 is generally detected by the
route processor 474 of the control plane 620 in response to
an interrupt (exception) asserted by either the forwarding
engine 454 or the Cobalt ASIC on the FP module 452. As a
result, the FP module hardware is placed in a reset state.

In response to the exception, the operating system 600
invokes an exception handler routine 655 that determines the
source of the error by collecting state information used to
debug the error. The exception handler 655 is preferably part
of the FP driver code 650 executed by the route processor
474. Once the exception handler is invoked, the FP driver
initiates a call back function to the FP clients 630 instructing
them to halt further downloads of updated information to the
FP module hardware. The FP driver then proceeds to retrieve
state information stored in the registers and internal memo-
ries of the forwarding engine, and stores that state informa-
tion in the memory 478 of the RP module 472. Once all the
state information has been saved, the hardware components
of the data plane 670 are placed into a restart state that
essentially “wipes-out” any software that could have created
the exception condition.

In general, a reset event typically refers to a condition
wherein a piece of hardware is non-responsive to an external
input. When the piece of hardware emerges from reset, it is
in a state similar to when the hardware is initially powered
on. At this point, an initialization sequence is executed to
bring the hardware to a functional state. When resetting the
FP module, not only is the forwarding engine reset, but the
Cobalt ASIC is also reset. In the latter case, pointers (within
the Cobalt ASIC) to data structures, such as direct memory
access (DMA) descriptor rings, in the RP memory 478 must
be re-established and buffers need to be re-allocated. In
addition, an internal packet memory of the Cobalt ASIC is
cleared and DMA engines are restarted. In essence, the
initialization sequence comprises a plurality of stages that
incrementally bring the Cobalt ASIC and forwarding engine
to a fully operational state.

At this point, the forwarding engine 454 and FP micro-
code 660 are in operational states, and the FP driver 650 may
“call back” to the FP clients 630, instructing them to
reinitialize themselves. In response, the FP clients 630
identify those tables that should be loaded into the forward-
ing engine and proceed to download that code through the
FP driver 650. Downloading of information between the RP
control plane 620 and the FP data plane 670 takes place over
the PCI bus 540.

Once the FP module hardware emerges from reset, its
components have been reinitialized, the FP micro-code has
been downloaded and the first stages of the initialization
sequence have been initiated. The FP driver 650 informs the
FP clients 630 of the resetting and reinitialization of the FP
hardware so that the FP clients can begin downloading their
configuration state (e.g., FIB tables) to the forwarding
engine 454. According to the invention, resynchronization

US 6,785,843 B1

1

comprises reloading of the configuration and state informa-
tion (needed to restart and reinitialize the forwarding engine)
from the control plane 620 to the data plane 670. Notably,
the configuration and state information is distributed among
the various features of the operating system. Once resyn-
chronization has completed, the FP micro-code 660
executed by the forwarding engine is instructed to begin
forwarding data traffic (e.g., packets) and the aggregation
router 400 is essentially back online.

In the illustrative embodiment, each FP client 630 is
configured to respond to a series of events that may occur
within the aggregation router. FIG. 7 is a state diagram 700
illustrating various FP module hardware and FP client events
and defined states, including reset, initialize (init), run, start
and stop. In response to a reset event, the FP driver 650
invokes (via a call back function of the API) a reset vector
that instructs the FP clients 630 to suspend access to the FP
module hardware. The FP clients then halt, divert or “queue”
(temporarily store) any packets or messages being sent to the
FP hardware, since that hardware is in a non-operational
state. In addition, the FP clients “free” (release) any dynami-
cally allocated resources, such as buffers and dynamic state
data structures, which were allocated as part of FP module
processing.

Once the data plane emerges from reset and at a defined
point of the initialization sequence, the FP driver 650 calls
an init vector that instructs the FP clients to allocate system
resources, such as FP memory of the forwarding engine, if
not already allocated. In addition, the init vector instructs the
clients 630 to initialize data structures both in the route
processor (if necessary) and within the FP memory in
anticipation of commencement of forwarding engine opera-
tion (i.e., the run event). The FP clients re-initialize all data
structures during the init phase since there is no guarantee
that previously-allocated data structures have not been cor-
rupted or that, during the FP reset, the contents of the FP
memory have been cleared. Furthermore, the FP clients are
instructed to initialize other system objects (e.g., drivers) so
that they can begin interacting with the FP module hardware.

The FP driver 650 invokes a start vector in response to a
start event, which denotes that the FP hardware resources
needed by the operating system have been enabled and are
now accessible. In particular, the start vector informs the FP
clients that the FP micro-code 660 has been fully down-
loaded and initialized, and is now running. The FP clients
630 may thus begin downloading all of their configuration
and state information into the FP memory. In contrast, the FP
driver calls a stop vector when the FP module hardware has
asserted an exception or is about to be reset; in response, the
FP clients disable any FP operations. The stop vector call
back may be invoked from an interrupt level SO that the FP
client should not free or reinitialize any resource, but rather
simply “flag” the FP hardware as being out-of-operation.
Therefore, no accesses to FP hardware should be performed
during the stop event phase.

In sum, the present invention comprises a system and
method for (i) resetting and restarting of the data plane
without affecting the control plane, and (ii) after the data
plane hardware has been reset, resynchronizing the data
plane with state stored in the control plane. Resetting of the
data plane 670 without affecting the state stored in the
control plane 620 of the router 400 generally requires a
coupling/decoupling mechanism between the two planes of
the router. The PCI bus 540 provides a physical coupling
between the planes, whereas the FP driver 650 provides a
logical coupling between the planes. Essentially, the FP
driver provides a single point of access (control) when either

10

15

20

25

30

35

40

45

50

60

65

12

downloading or retrieving information to and from the data
plane by the operating system residing on the control plane.

An advantage of the data plane restart invention is that
state information maintained on the control plane is pre-
served. Thus, resetting and restarting of the data plane can
be performed in a few seconds rather than several minutes
needed to reacquire the state information in order to restart
the entire aggregation router, including the control plane. In
addition, the router is still considered an active intermediate
node to its neighboring routers in the network even though
the data traffic forwarded to the router does not flow through
the data plane. This aspect of the invention obviates the need
to recompute and re-converge forwarding databases in the
network.

The foregoing description has been directed to specific
embodiments of this invention. It will be apparent, however,
that other variations and modifications may be made to the
described embodiments, with the attainment of some or all
of their advantages. Therefore, it is the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
invention.

What is claimed is:

1. A method for restarting a data plane of an intermediate
node of a computer network without affecting state infor-
mation stored on a control plane of the node, the method
comprising the steps of:

executing an operating system on a supervisor processor,

the operating system having a platform independent
code region and a platform specific code region, the
platform independent code region having code features
to build forwarding information base (FIB) tables for
designated protocols;

coupling client software to each code feature, the client

software also coupling to the platform specific code
region of the operating system;

maintaining a current state of the control plane with the

supervisor processor of the control plane;

detecting a fatal error in the data plane at the supervisor

processor, the data plane including hardware compo-
nents;

notifying the client software about the fatal error;

restarting only the data plane while continuing operation

of the control plane; and

loading software into the hardware components of the

data plane by the client software.

2. The method of claim 1 wherein the step of detecting
comprises the step of reporting an exception state by at least
one hardware component of the data plane.

3. The method of claim 2 wherein the at least one
hardware component is a forwarding engine of the data
plane.

4. The method of claim 2 further comprising the steps of,
in response to the step of detecting:

notifying clients of an operating system about the fatal

error, the operating system executing on the supervisor
processor;

invoking an exception handler routine to resolve the fatal

error; and

terminating further attempts by the clients to access the

hardware components of data plane while in the excep-
tion state.

5. A method for restarting a data plane of an intermediate
node of a computer network without affecting state infor-
mation stored on a control plane of the node, the method
comprising the steps of:

US 6,785,843 B1

13

maintaining a current state of the control plane with a

supervisor processor of the control plane;

reporting an exception state by at least one hardware

component of the data plane to detect a fatal error in the

data plane at the supervisor processor, the data plane

including hardware components;

restarting only the data plane while continuing opera-
tion of the control plane;

issuing registered call back functions to the clients from
driver software executing on the supervisor proces-
sor to notify clients of an operating system about the
fatal error, the operating system executing on the
SUpervisor processor;

invoking an exception handler routine to resolve the fatal

error; and

terminating further attempts by the clients to access the

hardware components of data plane while in the excep-
tion state.

6. The method of claim 4 wherein the step of invoking
comprises the steps of:

collecting information to determine a source of the fatal

error; and

debugging the fatal error using the collected information.

7. The method of claim 4 wherein the step of restarting
comprises the steps of, in response to resolving the fatal
error:

resetting the hardware components of the data plane; and

re-synchronizing the hardware components with the state

information stored on the control plane.

8. The method of claim 7 wherein the step of
re-synchronizing comprises the step of re-synchronizing a
forwarding engine of the data plane.

9. The method of claim 7 wherein the step of restarting
further comprises the step of reloading software into the
hardware components of the data plane.

10. The method of claim 7 wherein the state information
comprises interface states of line cards within the interme-
diate node.

11. The method of claim 7 further comprising the steps of

notifying the clients that they can again access the hard-

ware components of data plane; and

downloading configuration information into the hardware

components of the data plane.

12. The method of claim 11 wherein the step of down-
loading comprises the step of downloading configuration
information into a forwarding engine of the data plane.

13. The method of claim 1 wherein the step of restarting
comprises the steps of:

resetting the hardware components of the data plane; and

re-synchronizing the hardware components with the state

information stored on the control plane.

14. The method of claim 13 wherein the step of
re-synchronizing comprises the step of re-synchronizing a
forwarding engine of the data plane.

15. The method of claim 13 wherein the step of restarting
further comprises the step of reloading software into the
hardware components of the data plane.

16. The method of claim 13 wherein the state information
comprises interface states of line cards within the interme-
diate node.

17. A system for restarting a data plane of an intermediate
node of a computer network without changing state infor-
mation stored on a control plane of the node, the system
comprising:

components of the data plane adapted to receive packets

from the computer network and provide the packets to

10

15

20

25

30

35

40

45

50

55

60

65

14

a forwarding engine of the data plane, the forwarding
engine configured to perform forwarding operations on
the packets;

a supervisor processor of the control plane configured to
manage traffic forwarding operations of the node and
maintain a current state of the control plane, the super-
visor processor detecting a fatal error in the data plane
and restarting only the data plane while continuing
operation of the control plane;

means for executing an operating system on the supervi-
sor processor, the operating system having a platform
independent code region and a platform specific code
region, the platform independent code region having
code features to build forwarding information base
(FIB) tables for designated protocols;

means for coupling client software to each code feature,
the client software also coupling to the platform spe-
cific code region of the operating system;

means for notifying the client software about the fatal
error; and

means for loading software into the hardware components
of the data plane by the client software in response to
the restarting the data plane.

18. The system of claim 17 further comprising:

an operating system executing on the supervisor proces-
Sor;

a plurality of client modules logically interacting with
reset software of the operating system to enable execu-
tion of portions of the reset software that control the
data plane;

a driver executed by the supervisor processor, the driver
notifying the client modules of the fatal error; and

an exception handler invoked by the operating system to
resolve the fatal error.

19. The system of claim 17 wherein the intermediate node

is a router.

20. The system of claim 17 wherein the intermediate node
iS an aggregation router.

21. The system of claim 20 wherein the supervisor
processor is a route processor.

22. The system of claim 21 wherein the route processor
restarts the data plane by resetting the components of the
data plane and re-synchronizing the forwarding engine with
the state information stored on the control plane.

23. The system of claim 22 wherein the state information
comprises interface states of line cards within the aggrega-
tion router.

24. Apparatus for restarting a data plane of an interme-
diate network node without affecting state information
stored on a control plane of the node, the apparatus com-
prising:

means for maintaining a current state of the control plane;

means for detecting a fatal error in the data plane, the data
plane including hardware components;

means for restarting only the data plane while continuing
operation of the control plane;

means for executing an operating system on the supervi-
sor processor, the operating system having a platform
independent code region and a platform specific code
region, the platform independent code region having
code features to build forwarding information base
(FIB) tables for designated protocols;

means for coupling client software to each code feature,
the client software also coupling to the platform spe-
cific code region of the operating system;

US 6,785,843 B1

15

means for notifying the client software about the fatal

error; and

means for loading software into the hardware components

of the data plane by the client software in response to
the restarting the data plane.

25. The apparatus of claim 24 wherein the means for
detecting comprises means for reporting an exception state
by at least one hardware component of the data plane.

26. The apparatus of claim 25 further comprising, in
response to the means for detecting:

means for notifying clients of an operating system of the

control plane about the fatal error;

means for invoking an exception handler routine to

resolve the fatal error; and

means for terminating further attempts by the clients to

access the hardware components of data plane while in
the exception state.

27. The apparatus of claim 26 wherein the means for
restarting comprises, in response to resolving the fatal error:

means for resetting the hardware components of the data

plane; and

means for re-synchronizing the hardware components

with the state information stored on the control plane.

28. A computer readable medium containing executable
program instructions for restarting a data plane of a router
without changing state information stored on a control plane
of the router, the executable program instructions compris-
ing program instructions for:

maintaining a current state of the control plane with a

supervisor processor of the control plane;

detecting a fatal error in the data plane at the supervisor

processor, the data plane including hardware compo-
nents;

restarting only the data plane while continuing operation

of the control plane;
executing an operating system on the supervisor
processor, the operating system having a platform
independent code region and a platform specific code
region, the platform independent code region having
code features to build forwarding information base
(FIB) tables for designated protocols;

coupling client software to each code feature, the client
software also coupling to the platform specific code
region of the operating system;

notifying the client software about the fatal error; and

loading software into the hardware components of the

data plane by the client software in response to the
restarting the data plane.

29. The computer readable medium of claim 28 wherein
the program instruction for detecting comprises a program
instruction for reporting an exception state by at least one
hardware component of the data plane.

30. The computer readable medium of claim 29 further
comprising program instructions for, in response to the
program instruction for detecting:

notifying clients of an operating system about the fatal

error, the operating system executing on the supervisor
processor;

invoking an exception handler routine to resolve the fatal

error; and

terminating further attempts by the clients to access the

hardware components of data plane while in the excep-
tion state.

31. The computer readable medium of claim 30 wherein
the program instruction for restarting comprises program
instructions for, in response to resolving the fatal error:

10

15

20

25

40

45

50

55

60

65

16
resetting the hardware components of the data plane; and

re-synchronizing the hardware components with the state
information stored on the control plane.

32. Electromagnetic signals propagating on a computer

network, comprising:

said electromagnetic signals carrying instructions for
execution on a processor for the practice of the method
steps,

executing an operating system on a supervisor processor,
the operating system having a platform independent
code region and a platform specific code region, the
platform independent code region having code features
to build forwarding information base (FIB) tables for
designated protocols;

coupling client software to each code feature, the client
software also coupling to the platform specific code
region of the operating system;

maintaining a current state of the control plane with the
supervisor processor of the control plane;

detecting a fatal error in the data plane at the supervisor
processor, the data plane including hardware compo-
nents;

notifying the client software about the fatal error;

restarting only the data plane while continuing operation
of the control plane; and

loading software into the hardware components of the
data plane by the client software to restart a data plane
of an intermediate node of a computer network without
affecting state information stored on a control plane of
the node.

33. An intermediate node of a computer network, com-

prising:

components of a data plane adapted to receive packets
from the computer network and provide the packets to
a forwarding engine of the data plane, the forwarding
engine configured to perform forwarding operations on
the packets;

a supervisor processor of the control plane configured to
manage traffic forwarding operations of the node and
maintain a current state of the control plane, the super-
visor processor detecting a fatal error in the data plane
and restarting only the data plane while continuing
operation of the control plane;

means for executing an operating system on the supervi-
sor processor, the operating system having a platform
independent code region and a platform specific code
region, the platform independent code region having
code features to build forwarding information base
(FIB) tables for designated protocols;

means for coupling client software to each code feature,
the client software also coupling to the platform spe-
cific code region of the operating system;

means for notifying the client software about the fatal
error; and

means for loading software into the hardware components
of the data plane by the client software in response to
the restarting the data plane, to restart the data plane
without changing state information stored on the con-
trol plane of the node.

