United States Patent

US007236493B1

(12) (10) Patent No.: US 7,236,493 B1
McRae 45) Date of Patent: Jun. 26, 2007
(54) INCREMENTAL COMPILATION FOR 6,377,577 Bl 4/2002 Bechtolsheim et al.
CLASSIFICATION AND FILTERING RULES 6,529,508 B1* 3/2003 Lietal. ..ccccoceounnene 370/392
6,778,530 B1* 8/2004 Greenecccceeeeen.. 370/389
(75) Inventor: Andrew McRae, Berowra (AU)
OTHER PUBLICATIONS
(73) Assignee: Cisco Technology, Inc., San Jose, CA Pankaj Gupta and Nick McKeown, Packet Classification on Mul-
(Us) tiple Fields, ACM SIGCOMM 99, Sep. 1999, Harvard University,
pp. 1-14.
(*) Notice: Subject to any disclaimer, the term of this T.V. Lakshman and D. Stiliadis, High-Speed Policy-based Packet
patent is extended or adjusted under 35 Forwarding Using Efficient Multi-dimensional Range Matching,
U.S.C. 154(b) by 1029 days. 1998, pp. 203-214.
U.S. Appl. No. 09/557,480, Andrew McRae.
(21) Appl. No.: 10/170,896 U.S. Appl. No. 10/072,824, Li et al.
" .
(22) Filed: Jun. 13, 2002 cited by examiner
Primary Examiner—Chau Nguyen
(51) Int. Cl. Assistant Examiner—Jung Park
HO4L 12728 (2006.01) (74) Attorney, Agent, or Firm—Cesari & McKenna, LLP
(52) US.CL oo 370/392; 370/401
(58) Field of Classification Search None (57) ABSTRACT
See application file for complete search history.
. A technique classifies packets in a manner that is both
(56) References Cited deterministic and efficient. A hierarchical arrangement of

U.S. PATENT DOCUMENTS

5,027,350 A 6/1991 Marshall

5,473,607 A 12/1995 Hausman et al.

5,509,006 A 4/1996 Wilford et al.

5,852,607 A 12/1998 Chin

5,872,783 A 2/1999 Chin

5,881,242 A 3/1999 Ku et al.

5,917,820 A 6/1999 Rekhter

5,951,651 A * 9/1999 Lakshman et al. 709/239
6,091,725 A 7/2000 Cheriton et al.

6,167,445 A 12/2000 Gai et al.

6,219,706 Bl 4/2001 Fan et al.

6,243,667 Bl 6/2001 Kerr et al.

6,282,546 Bl 8/2001 Gleichauf et al.

6,308,219 Bl 10/2001 Hughes

6,324,656 B1 11/2001 Gleichauf et al.

6,341,130 B1* 1/2002 Lakshman et al. 370/389

lookup tables is organized into levels to classify the packets.
Entries contained in the lookup tables are incrementally built
and added to the lookup tables as packets are classified. A
packet is divided into a series of fields and a first-level
lookup table is built for each of these fields. Successive-
level-lookup tables are then allocated and initialized to
contain “missing” entries. When a packet is classified, it is
applied to the first-level lookup tables to produce a series of
indices. These indices are then applied to the second-level
lookup tables to select indices that are the applied to a
next-level table and so on until an outcome index is selected
from a final-level lookup table. If the entry selected in the
second-level lookup table is empty the successive-level
entries are built and the classification is retried.

20 Claims, 13 Drawing Sheets

510

DIVIDE PACKET HEADER INTO SECTIONS

-— 520

!

GENERATE FIRST-LEVEL TABLES

—— 550

!

PRE-ALLOCATE LOOKUP TABLES
FOR SUCCESSIVE LEVELS

~— 560

!

INITIALIZE ALLOCATED LOOKUP TABLES

—— 580

590

U.S. Patent Jun. 26,2007 Sheet 1 of 13 US 7,236,493 B1

100\\\

END END END END
NODE NODE NODE NODE
110 110 110 110
¢ ¢
120 130 130 120
INTERMEDIATE INTERMEDIATE
NODE NODE
200 200

FIG. 1

U.S. Patent Jun. 26,2007 Sheet 2 of 13 US 7,236,493 B1

200~
230
210a 220
- N {
e LINE CARD 1
| switcH
2173~ “—| FABRIC
~210b
215b<
LINE CARD 2 |
217b~" e ,
SWITCH
FABRIC
| BACKPLANE
u 300
| {
| ROUEE
- -t .
LINE CARD N I.— MODULE
217(:j ~
210¢c

FIG. 2

US 7,236,493 B1

Sheet 3 of 13

Jun. 26, 2007

U.S. Patent

JHNLONYLS
V.LvV(Q

¢ Old

AHON3N
13IHOvd

/

Gye
AHOW3N
d05S300dd

1901
JOV443LNI

/

d37104LNOD
W3LSAS

d0SS3004d

oge

W3LSASENS
40SS3008d LSOH

\

0ce

02¢
ANV 1dXOVd
oldgv4
HOLIMS

U.S. Patent Jun. 26, 2007

425 430 440
—t—

~— —A— s

420a— access-list 101 deny
420b—~ access-list 101 permit
420c ~ access-list 101 permit
420d —~ access-list 101 deny
420e —~ access-list 101 deny

Sheet 4 of 13

US 7,236,493 B1

»— 400

450

tcp 192.100.
ip 192.100.
ip 192.101.
tcp any
udp any

FIG. 4

OO

25525500 eq smtp
255.255.0.0

255.255.0.0
any eq 21
any eq 80

U.S. Patent Jun. 26,2007 Sheet 5 of 13 US 7,236,493 B1

START 510
DIVIDE PACKET HEADER INTO SECTIONS If 520
GENERATE FIRST-LEVEL TABLES I/ 550

PRE-ALLOCATE LOOKUP TABLES 560
FOR SUCCESSIVE LEVELS

INITIALIZE ALLOCATED LOOKUP TABLES 580

FIG. 5

US 7,236,493 B1

Sheet 6 of 13

Jun. 26, 2007

U.S. Patent

0 9|4
LG INIWOVYS NIGWNNINOd ¥3IGWAN 3ONIAIHTud SSIHAAY
SOV dOL NOILYNLISIA 1HOd30MN0S /SOLM0D0L0Nd NOILYNILS3A dl $S34aay 304N0S dl
I i i] I I I |
qZl9 BZl9 0i9 800 Q900 900 09 BP09 G209 €200
219 909 509 209
>— 009

U.S. Patent

Jun. 26, 2007 Sheet 7 of 13

(START)f‘705
\

US 7,236,493 B1

ALLOCATE FIRST-LEVEL LOOKUP TABLE
AND INITIALIZE SECTION VALUE

l710

L

CREATE NEW BITMAP OF MATCHING RULES

FOR SECTION VALUE 720
780 740
A BITMAP 30 | ASSIGN EQUIVALENCE
NEXT SECTION MATCHES ENTRY IN SET INDEX TO BITMAP
VALUE EQUIVALENCE AND ADD BITMAP
T SET? TO EQUIVALENCE SET
YES
RETRIEVE MATCHING ENTRY'S | 750
EQUIVALENCE SET INDEX
V<
ASSOCIATE EQUIVALENCE SET INDEX | 7¢n
TO SECTION VALUE'S LOOKUP TABLE ENTRY

NO LAST SECTION

VALUE?

FIG. 7

U.S. Patent

Jun. 26, 2007 Sheet 8 of 13

(START) 810
A

US 7,236,493 B1

CREATE EMPTY BITMAP

820

4

START WITH FIRST FILTER RULE

I’ 830

A

880
> VALGE MATCH
NEXT RULE ‘ CRITERIA IN FILTER

RULE?

A

850

CLEAR BIT IN MAP

SET BIT IN MAP

I'860

-
-

Y

870

NO/LL
FILTER RULES

SCANNED?

890

FIG. 8

U.S. Patent Jun. 26,2007 Sheet 9 of 13 US 7,236,493 B1

(START)~910

Y

DIVIDE PACKET HEADER INTO SECTIONS

Ir 920

f-.

947

i]

APPLY PACKET SECTIONS TO FIRST-LEVEL
LOOKUP TABLES TO GENERATE
SECOND-LEVEL LOOKUP TABLE INDICES

— 930

Y

APPLY SECOND-LEVEL LOOKUP TABLE
INDICES TO SECOND-LEVEL TABLE
TO GENERATE NEXT-LEVEL INDICES

— 940

BUILD
SUCCESSIVE-LEVEL
ENTRIES

NEXT-LEVEL
INDICES INDICATE ENTRIES
MISSING?

APPLY NEXT-LEVEL INDICES
TO NEXT-LEVEL TABLE AND SO ON UNTIL
THE FINAL-LEVEL TABLE IS INDEXED

— 950

Y

PROCESS PACKET
USING FINAL-LEVEL TABLE INDEX

I» 960

\ /

(STOP)-990

FIG. 9

U.S. Patent Jun. 26,2007 Sheet 10 of 13 US 7,236,493 B1

(START)~1010
y

LOGICALLY AND SET X ENTRY'S BITMAP rmzo

WITH SET Y ENTRY'S BITMAP TO CREATE
NEW BITMAP

1035
NEW ASSIGN NEW EQUIVALENCE
BITMAP MATCHES EXISTING SET INDEX AND
BITMAP IN EQUIVALENCE ADD NEW BITMAP
SET 27 TO NEW EQUIVALENCE SET Z

ENTRY'S EQUIVALENCE SET INDEX

GET MATCHING
1040

/

\

ASSOCIATE EQUIVALENCE SET INDEX L1050
TO LOOKUP TABLE ENTRY

(_ STOP)~1090

FIG. 10

U.S. Patent Jun. 26, 2007 Sheet 11 of 13

(UPPER 16 BITS
OF IP SOURCE ADDRESS
FIRST-LEVEL LOOKUP TABLE

[0] =1

11053 11062~ [49251] = 1

11154

1106b ~ [49252] = 2
1106¢ ~ [49253] = 3
1106d ~ [49254] = 1

[65535] = 1

(UPPER 16 BITS
OF IP SOURCE ADDRESS
FIRST-LEVEL EQUIVALENCE SET

INDEX BITMAP

11108 ~ 1 00011
1110b ~ 2 11011

\11100\3 00111
CROSS-PRODUCT

LOWER 16 BITS)

OF IP SOURCE ADDRESS
FIRST-LEVEL LOOKUP TABLE

[0] =1

1108a ~ [255] = 1
1108b ~ [256] = 2
1108¢ ~ [257] = 1

[65535] = 1

LOWER 16 BITS)

OF IP SOURCE ADDRESS
FIRST-LEVEL EQUIVALENCE SET

INDEX BITMAP

11202~ 1 000
1

11
1120b~ 2 11111

NEW BITMAP

B2]=00111&11111 — 00111

NEXT-LEVEL LOOKUP)
TABLE

> 1175

=, OO OoOO

[\

H—_I
1140

NEXT-LEVEL EQUIVALENCE)
SET

INDEX BITMAP

Py

US 7,236,493 B1

>1107

> 1125

>1145

1147 ~1 00111

J

FIG. 11

US 7,236,493 B1

Sheet 12 of 13

Jun. 26, 2007

U.S. Patent

commeL_ _

¢l 9ld

_ _rovmv

[

h

4

Holch

r §

-

boLz|

10Lel

9012l

_ _rmommr

* /

3

_ _roommv QONNPL_ ._

A

POLC)

/
1] ¥4

_ _rmommr

y |

4

\
q0Lcl

55

E0LCl

US 7,236,493 B1

Sheet 13 of 13

Jun. 26, 2007

U.S. Patent

(000052)

S

955

€l ol

006

Aoooovwv\\\gll/

(N

006

Ammmmv\\\q,//

8¥9

(000081)

006

Aﬁmvmmv\\\qll/

5%

6.9

(1

00¢

Ammﬁv\\\g,//

16

A

€1

¢l

11

US 7,236,493 Bl

1

INCREMENTAL COMPILATION FOR
CLASSIFICATION AND FILTERING RULES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present invention is related to co-pending and com-
monly assigned U.S. patent application Ser. No. 09/557,480,
now issued as U.S. Pat. No. 6,970,462, titled, “A Method for
High Speed Packet Classification,” which was filed on Apr.
24, 2000 and U.S. patent application Ser. No. 10/072,824
titled “Method for Classifying Packets Using Multi-Class
Structures” which was filed on Feb. 8, 2002.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to the classification and/or
filtering of data packets, and more specifically to the high
speed filtering and/or classification of data packets.

2. Background Information

In a communications network, there is a well-recognized
need to classify information units, such as packets, that are
passed between the various network devices in the network,
e.g., routers and switches, in order to support a wide range
of applications, such as security control, packet filtering,
Class of Service (CoS) and Quality of Service (QoS). Often
in such networks, these network devices use access control
lists (ACLs) to, inter alia, classify packets for these appli-
cations.

An ACL typically comprises an ordered list of access
control entries (ACEs), i.e., rules, where each rule defines a
pattern (criterion) that is compared with received packets.
The pattern could specify a particular source or destination
address, a protocol or some other field that is looked for in
the packet. For example, the pattern might be defined to look
for a specific protocol in the packet’s header such as, the
Transmission Control Protocol (TCP) or the Internet Proto-
col (IP). The pattern is used to determine if the rule applies
to the packet. If the pattern is found in the packet, the rule
is said to apply to the packet.

Associated with each rule is an action that specifies the act
to be taken if the rule applies. In its simplest form, this action
may be to allow the matched packet to proceed towards its
destination, i.e., “permit,” or to stop the packet from pro-
ceeding any further, i.e., “deny.” Conversely, if there is no
match to any of the ACL’s rules, the action may be to drop
the packet, i.e., “a final deny.” In a more sophisticated form,
complex policies and filtering rules may be implemented in
the ACL to determine the course of the data packet.

Typically, a packet is classified by searching for the first
rule in the ACL that applies to the packet. The number of
rules involved and the amount of processing time needed to
make this determination often depends on the approach
taken. For example, one approach would be to run through
the list of rules starting from the first rule in the list and
continuing towards the last rule in the list until a matching
rule, i.e., a rule that applies to the packet, is found. This
approach is simple, but is not very efficient. For example, the
time spent processing each packet may vary depending on
the packet. Packets that meet the criteria associated with
rules earlier in the list will be processed faster than packets
that meet criteria associated with rules that are positioned
farther down the list.

One approach to obtaining an overall faster processing of
packets is to predetermine the frequency of the matching of
the various rules and to place the most selected rules at the

20

25

30

35

40

45

50

55

60

65

2

top of the list. However, this method is highly dependent on
the packet mix and is not very efficient should this mix
change. Another approach would be to implement a tech-
nique whereby packets are classified using a predetermined
number of lookup operations such as described in commonly
owned co-pending U.S. patent application Ser. No. 09/557,
480, now issued as U.S. Pat. No. 6,970,462, titled, “A
Method for High Speed Packet Classification,” which was
filed on Apr. 24, 2000, by Andrew McRae and hereinafter
referred to as “McRae.”

McRae describes a technique whereby a packet’s header
is divided into sections. These sections are applied to a
hierarchy of lookup tables that represent all possible com-
binations of matching rules for all values of the packet
header sections to determine an outcome such as, e.g., a first
matching rule that applies to the packet. These lookup tables
must exist before a packet can be classified. Computing
resources, such as processor time and memory, needed to
generate these lookup tables depends in part on the number
of rules in the ACL. Generally, as the number of rules in the
ACL increases, the computing resources needed to build and
hold the lookup tables increases. In systems where comput-
ing resources are limited, the number of rules that the
technique can support may be limited due to the limited
resources available.

SUMMARY OF THE INVENTION

The present invention incorporates a technique for clas-
sifying packets in a manner that is deterministic and effi-
cient. The inventive technique is deterministic in that it uses
a hierarchical arrangement of lookup tables containing a first
level and one or more successive levels to classify packets
in a fixed number of lookup operations. Moreover, the
inventive technique is efficient in that it does not require that
the lookup tables contain a complete set of entries that
represent all possible combinations of matching rules before
a packet can be classified, thereby saving valuable comput-
ing resources.

Briefly, a packet is divided into a series of sections where
each section is associated with a plurality of section values.
A first-level lookup table and equivalence set is generated
for each of these sections, where each entry contained in the
equivalence set is associated with one or more rules con-
tained in the ACL. Each entry in the first-level lookup table
associates a section value with an equivalence set entry.
Next, depending on the number of sections, one or more
successive-level lookup tables are generated to complete the
lookup table hierarchy. The entries in the successive-level
tables are then initialized to indicate they are “missing,” i.e.,
empty. When a packet is classified, it is applied to the
first-level lookup tables to generate a set of first-level
indices. These first-level indices are then applied to the
successive-level lookup tables to generate a set of succes-
sive-level indices that are then applied to the next-level of
tables in the successive-level tables to generate a set of
next-level successive-level indices. The process continues
until a final-level table index is generated. If the successive-
level indices indicate that a successive-level lookup table
entry is empty, the successive-level entries are built and the
classification is retried.

Advantageously, the inventive technique enables packets
to be classified in a deterministic and efficient manner
without requiring that all possible outcomes be determined
before packet classification can take place, thereby saving
time and computing resources. Moreover since only entries
that are actually used in the packet classification process are

US 7,236,493 Bl

3

compiled and added to the lookup tables, the inventive
technique enables systems with limited resources to handle
a larger number of rules that might otherwise not be possible
using other classification techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which like
reference numbers indicate identical or functionally similar
elements:

FIG. 1 is a schematic block diagram of a network that can
be advantageously implemented with the present invention;

FIG. 2 is a partial schematic block diagram of an inter-
mediate node that can advantageously implement the present
invention;

FIG. 3 is a partial schematic block diagram of a route
processor module that can advantageously implement the
present invention;

FIG. 4 is an example of an access control list that can be
used with the present invention;

FIG. 5 is a high-level flow diagram of a sequence of steps
that can be used to build a series of first-level lookup tables
and allocate successive-level lookup tables in accordance
with the present invention;

FIG. 6 is a packet header template that can be used to
divide a TCP packet header into sections for use in forming
first-level lookup tables and equivalence sets that can be
used with the present invention;

FIG. 7 is a flow diagram of a sequence of steps that can
be used to create a series of first-level lookup tables in
accordance with the present invention;

FIG. 8 is a flow diagram of a sequence of steps that can
be used to create a matching rule bitmap associated with a
section value that can be used advantageously used with the
present invention;

FIG. 9 is a high-level flow diagram of a sequence of steps
that can be used to classify a packet in accordance with the
present invention;

FIG. 10 is a flow diagram of a sequence of steps that can
be used to merge two equivalence-set entries to form a new
equivalence-set entry and lookup-table entry;

FIG. 11 is an example of the merging of two first-level
bitmaps to generate a next-level equivalence-set entry and
lookup-table entry;

FIG. 12 is an example of how equivalence sets can be
merged to form successive-level equivalence sets; and

FIG. 13 is an example of a lookup table hierarchy
containing estimated lookup-table sizes.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

FIG. 1 is a schematic block diagram of a computer
network 100 that can be advantageously used with the
present invention. The computer network 100 comprises a
collection of communication links and segments connected
to a plurality of nodes, such as end nodes 110 and interme-
diate nodes 200. The network links and segments may
comprise local area networks (LANs) 120 and wide area
network (WAN) links 130 interconnected by intermediate
nodes 200, such as network switches or routers, to form an
internetwork of computer nodes. These internetworked
nodes communicate by exchanging data packets according
to a predefined set of protocols, such as the Transmission

20

25

30

35

40

45

50

55

60

65

4

Control Protocol/Internet Protocol (TCP/IP) and the Asyn-
chronous Transfer Mode (ATM) protocol.

FIG. 2 is a partial block diagram of a typical intermediate
node (switch) 200 that can advantageously implement the
present invention. An example of an intermediate node 200
that could be used in the computer network 100 is the Cisco
MGX 8850 IP+ATM Multiservice Switch, available from
Cisco Systems, Incorporated, San Jose, Calif. The MGX
8850 is designed for service providers deploying narrow-
band and/or broadband services. The MGX 8850 scales from
DSO0 to OC48c and supports various services, such as frame
relay, ATM, Voice over IP, circuit emulation, IP, wireless
aggregation, DSL aggregation, ATM service backbones and
Virtual Private Networks (VPN’s). The intermediate node
200 comprises a plurality of cards including line cards 210,
a switch fabric card 230 and a route processor module 300
card interconnected by a switch fabric backplane 220.

The line cards 210 connect (interface) the switch 200 with
the network 100. To that end, the line cards 210 receive and
transmit data over the network through input 215 and output
ports 217, respectively, using various protocols, such as
OC-48c, DS0, T3 and so on. The line cards 210 also forward
data received from the network to the switch fabric back-
plane 220, as well as transmit data received from the switch
fabric backplane 220 to the network.

The switch fabric backplane 220 comprises logic and a
backplane that provides an interface between the line cards
210, the switch fabric card 230 and the route processor
module card 300. For example, the switch fabric backplane
220 provides interconnections between the cards that allow
data and signals to be transferred from one card to another.

The switch fabric card 230 comprises switch fabric logic
(switch fabric) that is configured to switch data between the
cards coupled to the switch fabric backplane 220. For
example, assume a packet is sent from a line card 210 to the
switch fabric card 230. The switch fabric card 230 applies
the packet header associated with the packet to the switch
fabric logic and selects a destination card, such as the route
processor card 300, that is to receive the packet. The packet
is then switched to the destination card.

The route processor (RP) module 300 is adapted to
provide, inter alia, layer 3 processing for incoming packets.
FIG. 3 is a partial block diagram of the route processor
module 300 comprising a host processor subsystem 310,
processor memory 340, interface logic 350 and packet
memory 360. The host processor 310 further comprises a
processor 320 coupled to a system controller 330. The
processor 320 comprises processing elements and logic that
are capable of executing instructions and generating
memory requests. An example of a processor that may be
advantageously used with the route processor module 300 is
the MIPS 10000 processor available from Silicon Graphics
Incorporated, Mountain View, Calif. The system controller
330 is preferably embodied in a high performance Applica-
tion Specific Integrated Circuit (ASIC), which is configured
to interface the processor 320 with the processor memory
340 and the packet memory 360.

The processor memory 340 is a computer readable
medium that holds executable instructions and data that are
used by the processor 320 and enable (adapt) the processor
320 to perform various functions. These functions include
methods for performing the present invention. The processor
memory 340 comprises one or more memory devices (not
shown) that are capable of storing executable instructions
and data. Preferably, these memory devices are industry
standard memory devices such as, Synchronous Dynamic

US 7,236,493 Bl

5

Random Access Memory (SDRAM) devices available from
Micron Technology, Inc., Boise, Id.

The interface logic 350 comprises hardware logic that,
inter alia, provides an interface that allows data and signals
to be transferred between the packet memory 360, the host
processor 310 and the switch fabric backplane 220.

The packet memory 360 comprises memory devices (not
shown) capable of storing packets received by the interface
logic 350. Preferably, these memory devices are industry
standard high-speed memory storage devices, such as Ram-
bus Dynamic Random Access Memory (RDRAM) devices
available from Rambus, Inc., Los Altos, Calif.

Broadly stated, packets are received from the network 100
by the line cards 210 and sent over the switch fabric
backplane 220 to the switching fabric 230 for further pro-
cessing. The switching fabric 230 examines header infor-
mation contained in the packets and forwards the packets to
the appropriate card coupled to the switch fabric backplane
220. Packets destined for the route processor module 300 are
received by the interface logic 350 and placed in the packet
memory 360. The interface logic 350 informs the host
processor 310 of the arrival of a packet. The processor 320
processes the packet in part by issuing requests to the system
controller 330 to access the packet data stored in the packet
memory 360. Further processing, including classifying the
packet in accordance with the present invention, is per-
formed by executing instructions and manipulating data
stored in the processor memory 340. The processor memory
340 includes a data structure 345 for storing information that
is used to classify the packets. Preferably, this data structure
345 is comprised of a hierarchical arrangement of lookup
tables and equivalence sets that are configured using the
techniques of the present invention.

Suppose, for example, a user wishes to create data struc-
ture 345 on network device 200 for use in classifying
packets in accordance with an access control list (ACL). The
user might begin by accessing network device 200 and
entering a series of commands or statements to define the
ACL. FIG. 4 illustrates a series of statements the user might
enter to define this ACL. The ACL 400 contains a series of
rules 420a—e each of which specify a directive 425, an
access group number 430, an action 440 and matching
criteria 450. The directive 425 directs the system to interpret
the command as an ACE, i.e., rule. The access group number
430 defines the access group associated with the rule. The
action 440 defines the action to be taken if the rule is found
to apply to the packet being classified. The matching criteria
450 defines the criteria a packet must meet (match) in order
for the rule to apply. Typically, packets are classified in
accordance with an ACL by finding the first rule in the list
that applies to the packet, then taking the action specified in
the matching rule.

Now suppose the user wishes to direct network device
200 to create data structure 345 from the information
specified in ACL 400. The user may enter a series of
commands to direct device 200 to build data structure 345.
FIG. 5 is a high-level flow diagram of a sequence of steps
that network device 200 can use to create data structure 345.
The sequence begins at Step 510 and proceeds to Step 520
where a template of the packet header is used to divide a
packet’s header into separate disjoint sections.

FIG. 6 is a packet header template 600 that can be used
to divide a TCP packet header in accordance with the
invention. Packet header template 600 defines a plurality of
fields including an IP source address field 602, an IP
destination address field 604, a protocol field/type of service
(TOS)/precedence field 606, a source port number field 608,

20

25

30

35

40

45

50

55

60

65

6

a destination port number field 610, and a TCP flags/
fragment bit field 612. Though the size of each section can
vary, preferably, the length of each section is equal-sized.
For example, template 600 divides a TCP header into eight
16-bit equal-length sections comprising sections 602a,
6025, 604a, 6045, 606, 608, 610 and 612. The IP source
address 602 comprises two 16-bit sections that include the
upper 16 bits of the IP source address section 602a and the
lower 16 bits of the IP source address section 602b. Like-
wise, the IP destination address 604 comprises two 16-bit
sections that include the upper 16 bits of the IP destination
address section 604a and the lower 16 bits of the IP
destination address section 6045. Section 608 comprises the
source port number field and section 610 comprises the
destination port number 610 field. Some smaller fields such
as the protocol 606a and TOS/precedence 6065 field are
grouped together to form a 16-bit section 606. Likewise, the
TCP flags field 6124 is combined with the IP Fragment bit
6124 to form a 16-bit section 612.

Taking one of these sections, such as the upper 16 bits of
the IP source address section 602a, and applying it to the
rules included in ACL 400, the following rule set illustrated
in Table 1 can be formed where “0.0” represents “any
value™:

TABLE 1
Rule Number Value Mask
1 192.100 255.255
2 192.100 255.255
3 192.101 255.255
4 0.0 0.0
5 0.0 0.0

From this rule set an “equivalence set” can be formed.
Basically, an equivalence set is a set of unique values that
exist across all rules for a particular packet header section.
For each entry in the equivalence set, an indication (match-
ing rule bitmap) is kept for those rules associated with the
entry, the rationale being that a packet section value may
appear in more than one rule. For example, ACL 400
contains five rules, thus each matching rule bitmap is five
bits in length (i.e., one bit for each rule). The value
“192.100/255.255” appears in both rules 1 and 2 above,
thus, the matching rule bitmap value associated with this
value is “11000.” By using a matching rule bitmap, rules
associated with each equivalence set entry may be tracked.
Each unique matching rule bitmap value is further assigned
an equivalence set index value. So for the example above,
the following equivalence set, shown in Table 2, is created:

TABLE 2

Equivalence Matching Rule

Value/Mask Set Index Bitmap 12345
0.0/0.0 1 00011
192.100/255.255 2 11011
192.101/255.255 3 00111

By comparing Table 1 with Table 2, one can see that
compression has taken place in that out of the five rules
within this section there are only three possible outcomes,
i.e., equivalence set index entries 1, 2 and 3. Thus, after
determining how many unique intervals there are in the
section value range from zero to 65535, the preliminary
equivalence set reduces the original rules down to a minimal

US 7,236,493 Bl

7

data set. This concept is used to build the first-level lookup
tables that map each 16-bit section value to a smaller index
value.

Referring again to FIG. 5 Step 550, the first-level lookup
tables and equivalence sets are built for each of the sections.
Preferably each first-level lookup table is organized as a
one-dimensional array that is indexed by a section value and
each entry is configured to hold an index value. Likewise,
each equivalence set is organized as a one-dimensional array
that is indexed by an index value and each entry is config-
ured to hold a bitmap that represents a set of matching rules,
i.e., matching rule bitmap. FIG. 7 is a flow diagram illus-
trating a sequence of steps that can be used to build the
first-level lookup table and equivalence set for a section.
Basically, the sequence iterates through all possible section
values and associates the section value with an equivalence-
set entry.

The sequence begins at Step 705 and proceeds to Step 710
where the first-level lookup table associated with the section
is allocated and the section value is initialized to a starting
value, preferably zero. Next at Step 720, a new matching
rule bitmap that represents the matching filter rules associ-
ated with the section value is created. A more detailed
description as to how this new matching rule bitmap is
created will be described below. At Step 730, the equiva-
lence set is searched to determine if an entry exists that
matches the new matching rule bitmap. If a matching entry
is not found, the sequence proceeds to Step 740, where a
new entry containing the new matching rule bitmap is added
to the equivalence set and a new equivalence set index is
associated with the entry; otherwise, the sequence proceeds
to Step 750 where the equivalence set index associated with
the matching value is retrieved. At Step 760, the equivalence
set index is then associated with the lookup table entry
associated with the section value. Next at Step 770, a check
is performed to determine if the section value is the last
section value to be processed. If not, the next section value
is calculated as indicated at Step 780 and the sequence
returns to Step 720; otherwise, the sequence proceeds to
Step 790 where the sequence ends. Steps 720 to 780 are
repeated until all of the section values from the starting value
to the last value have been processed. For example, for a
16-bit section Steps 720 to 780 are repeated for all section
values from zero to 65535.

FIG. 8 is a flow diagram of a sequence of steps that can
be used to create a matching rule bitmap for a given section
value from the matching rules contained in the ACL. The
sequence begins at Step 810 and proceeds to Step 820,
where an empty bitmap is created. Preferably, this bitmap
comprises at least one bit for each of the matching rules.
Next at Step 830, starting with the first matching rule the
section value is compared to the matching rule’s criteria to
determine if the section value matches the rule criteria i.e.,
the rule applies to the particular section value, as indicated
at Step 840. If the rule applies, the sequence proceeds to Step
860 where the bit associated with the rule in the bitmap is
set; otherwise, the sequence proceeds to Step 850 where the
associated bit is cleared. A check is then performed to
determine if all of the matching rules have been processed,
as indicated at Step 870. If not, the sequence proceeds to
Step 880 where the next matching rule is located, and then
returns to Step 840. Steps 840880 are repeated until all of
the matching rules have been processed, at which point the
sequence ends (Step 890).

Table 3 illustrates the first-level lookup table and equiva-
lence set that is created when the above techniques are

8

applied to the packet header section associated with the
upper 16 bits of the source IP address for ACL 400.

TABLE 3

Equivalence Matching Rule Bitmap

Packet Header Section Value Set Index 12345
0 to 49251 1 00011
and
10 4925465535
49252 2 11011
49253 3 00111

The above sequences are further applied to create the

5 first-level lookup tables and equivalence sets for each of the
eight sections associated with the packet’s TCP header
template, thus yielding eight first-level lookup tables. Table

4 illustrates the first-level lookup table and equivalence set
that is created when the above sequences are applied to the

—

20 gection associated with the lower-sixteen bits of the IP
source address for ACL 400.
TABLE 4

25 Equivalence Set Matching Rule Bitmap

Packet Header Section Value Index 12345

0 to 255 1 00011

and
257 to 65535
30 256 2 11111

Referring again to FIG. 5, at Step 560, lookup tables are
pre-allocated for each successive level beyond the first level
in the lookup-table hierarchy. In the example above, there
are eight first-level lookup tables. The equivalence sets
associated with these tables are merged, in a manner as will
be described below, to form four second-level lookup tables
and equivalence sets. The second-level equivalence sets are,
in turn, merged to form two third-level lookup tables and
equivalence sets, the latter of which are likewise merged to
form a single fourth (final) level lookup table and equiva-
lence set. Thus in the above example at Step 560, seven
lookup tables in total are pre-allocated for successive levels
two through four. Preferably these lookup tables are two-
dimensional arrays that are indexed by index values held by
the lookup tables of the previous level and each of the entries
in the successive-level lookup table is configured to hold an
index value.

The size of each allocated successive-level lookup table
depends on the number of entries in the table and the size of
each entry. The size of each entry should be large enough to
hold an index value. The maximum number of entries in the
successive-level lookup table can be determined by multi-
plying the number of entries in the two prior-level equiva-
lence sets being merged. For example, in the above-de-
scribed example the first-level equivalence set for the upper
sixteen bits of the IP source address contains three entries
and the first-level equivalence set for the lower sixteen bits
of the IP source address contains two entries. Thus, the
maximum number of entries in the second-level equivalence
set is six.

50

55

60

At Step 580, each entry in the allocated successive-level
lookup tables is initialized, preferably to zero, to indicate
that the entry is “missing,” i.e., it is empty and does not
contain a valid index value. The sequence then ends at Step
590.

US 7,236,493 Bl

9

FIG. 9 is a flow chart of a sequence of steps that can be
used to classify a packet in accordance with the present
invention. The sequence begins at Step 910 and proceeds to
Step 920 where a network packet’s header is sectioned as
described above. Next at Step 930, each section is applied to
their respective first-level lookup table to generate a set of
second-level lookup table index values. These second-level
indices are then applied to the second-level lookup table to
generate the next-level indices associated with the next level
of'lookup tables, if any, in the hierarchy, as indicated at Step
940. At Step 945, a check is performed to determine if the
next-level indices indicate that the second-level lookup table
entries are missing, which in the preferred embodiment
means the next-level index values are zero. If so, the
sequence proceeds to Step 947 where the successive-level,
i.e., second-level and beyond, lookup table and equivalence
set entries associated with the section values are built.

Basically, a successive-level equivalence set entry is built
by calculating the cross-product of the equivalence-set
entries from the prior level. Cross-producting is a technique
whereby two entities are logically ANDed to produce a
cross-product. For example, assume a bitmap B1 contains
the value “00111” and a bitmap B2 contains the value
“11110”. The cross-product of these bitmaps is calculated by
logically ANDing the value of B1, i.e., 00111, with the value
of B2, i.e., 11110, which results in the value “00110”. Once
the successive-level equivalence-set entry is built, the asso-
ciated lookup-table entry for that level is derived from
information in the equivalence-set entry.

FIG. 10 is a flow diagram of a sequence of steps that can
be used to build successive-level equivalence set and asso-
ciated lookup table entries. Assume equivalence set “X” and
“Y” are equivalence sets from a prior level and that equiva-
lence set “Z” is an equivalence set that is associated with a
next-level lookup table. Assume further that an entry in
equivalence set “X” associated with a first lookup table
index is to be merged with an entry in equivalence set “Y”
that is associated with a second lookup table index to form
a bitmap contained in equivalence set “Z” whose index is
associated with the next-level lookup table entry being built,
i.e., the entry in the next-level lookup table selected by the
combination of the first and second lookup table indices. The
sequence begins at Step 1010 and proceeds to Step 1020
where equivalence-set “X” entry’s matching rule bitmap is
logically ANDed with equivalence-set “Y” entry’s matching
rule bitmap to produce a new matching rule bitmap that is
the cross-product of these two entries. At Step 1030, equiva-
lence set “Z” is searched to determine if an entry exists that
matches the new matching rule bitmap. If a matching entry
is not found, the sequence proceeds to Step 1035, where the
new matching rule bitmap is assigned a new equivalence-set
index and placed in equivalence set “Z” at the location
selected by the newly assigned index. Otherwise, the
sequence proceeds to Step 1040 where the equivalence-set
index associated with the matching value is fetched. Next at
Step 1050, the equivalence-set index value is associated
with the next-level lookup table entry being built. In so
doing, the matching rule bitmap is associated with the
next-level lookup table entry. The sequence ends at Step
1090.

FIG. 11 illustrates the building of the second-level lookup
table and equivalence set entries for the upper and lower
16-bit sections of the IP Source Address of a TCP packet
using the above-described techniques. Assume a packet
containing an IP source address 192.101.1.0 is being clas-
sified. Further assume, the first-level lookup tables and
equivalence sets for the sections have been built and the

5

20

25

30

35

40

45

50

55

60

65

10

second-level lookup table has been allocated, as described
above, and the second-level equivalence set contains no
entries. The upper 16 bits of the packet’s IP Source Address,
i.e., 49253, applied to its section’s first-level lookup table
1105 selects entry 1106¢ and yields a second-level index
value of 3, which is associated with entry 1110c¢ in first-level
equivalence set 1115. Likewise, the lower 16 bits of the
packet’s IP Source Address, i.e., 256, applied to its section’s
first-level lookup table 1107 selects entry 11084 and yields
a second-level index value of 2, which is associated with
entry 11205 in first-level equivalence set 1125. The match-
ing rule bitmap values associated with entries 1110¢ and
112056 are then cross-producted, as described above, to
produce a new matching rule bitmap 1140. Since the second-
level equivalence set 1145 contains no entries, as indicated
above, there are no entries that match the bitmap 1140, thus,
bitmap 1140 is assigned a new index, i.e., “1,” and placed in
the equivalence set 1145 at entry 1147 associated with this
new index. Next, entry 1147 is associated with the second-
level lookup table entry 1170f that is associated with the
combined second-level indices, i.e., [3,2], by associating the
new index with entry 1170f.

The above-described cross-producting technique is
applied continually for each level in the lookup-table hier-
archy. FIG. 12 illustrates the merging process as applied to
the lookup-table hierarchy for a packet header that is divided
into eight sections. Here all eight first-level equivalence-set
entries associated with a packet’s section values are merged
to form four second-level-table and equivalence-set entries.
Likewise, these second-level equivalence-set entries are
merged to form two third-level table and equivalence-set
entries. These third-level equivalence sets, in turn, are
merged to form a single fourth-level final lookup table and
equivalence set. The end result is a 4-level hierarchy of
lookup-table entries and a final-equivalence set that can be
used to classify the packet.

Referring again to FIG. 9, after the successive-level
entries have been built, the sequence returns to Step 930 and
eventually progresses to Step 945, where the next-level
indices are examined to determine if they are missing, i.e.,
zero. Since, as described above, the indices are not zero the
sequence proceeds to Step 950 where the next-level indices
are applied to the next-level tables to generate indices that
are then applied to the next successive level of tables and so
on until an index is generated from the final-level table. At
Step 960, this index is then used to further process the
packet. This processing could include, for example, apply-
ing the index to a results table to determine the first matching
rule associated with the packet. At Step 990 the sequence
ends.

Although the above-described embodiment of the inven-
tion pre-allocates a lookup table whose size is based on the
product of the number of entries in the prior-level tables,
other embodiments of the invention may use other sizes. For
example, the size of each pre-allocated lookup table may be
based on an estimate. FIG. 13 illustrates a series of lookup
tables whose size are based on an estimated value rather than
a maximum value. Note that the values for level L1 are
actual values. The values represented in parenthesis are
maximum values. The non-parenthetic values for levels 1.2
through 14 are the actual values of the tables, which are
estimates. In this embodiment, when a packet is classified,
if the first-level indices point to a successive-level lookup
table entry that is beyond the allocated table, new lookup
tables are allocated using a larger estimated size and the
successive-level entries are then built using the newly allo-
cated tables.

US 7,236,493 Bl

11

In another embodiment of the invention, the size of each
lookup table is estimated and a history is kept of the last “N”
packets added to the tables. In this embodiment, when new
tables are allocated, they are “primed” with entries associ-
ated with the packets kept in the history.
In summary, the present invention incorporates a tech-
nique for classifying packets in a manner that is both
deterministic and efficient. The inventive technique enables
packets to be classified without having to completely build
all the entries in the lookup tables used to classify the
packets. Rather in accordance with the inventive technique,
entries are built incrementally as they are used to classify
packets. Advantageously, the inventive technique enables
packets to be deterministically and efficiently classified
without requiring that all possible outcomes be determined
before packet classification can take place, thereby saving
time and computing resources.
It will be apparent that other variations and modifications
may be made to the described embodiments, with the
attainment of some or all of their advantages. Therefore, it
is an object of the appended claims to cover all such
variations and modifications as come within the true spirit
and scope of the invention.
What is claimed is:
1. A method for generating a hierarchy of lookup tables
for use in classitying a network packet in accordance with an
access control list (ACL) containing one or more rules, the
hierarchy comprising a first level and one or more succes-
sive levels, the method comprising the steps of:
dividing a packet header contained in the network packet
into a plurality of sections wherein each section is
associated with a plurality of section values;

generating a first-level lookup table and equivalence set
associated with the first level in the hierarchy for each
of the sections wherein the equivalence set contains one
or more equivalence-set entries and wherein each
equivalence-set entry is associated with one or more
rules, and the first-level lookup table containing one or
more first-level lookup table entries wherein each first-
level lookup table entry associates each section value
with an equivalence-set entry;

allocating one or more successive-level lookup tables for

each successive level in the lookup table hierarchy
wherein each successive-level lookup table contains
one or more successive-level entries;

initializing the successive-level entries to indicate they are

missing;
creating a matching rule bitmap for each section value;
determining if the matching rule bitmap matches an entry
in the first-level equivalence set and, if not, assigning
an equivalence-set index value to the matching rule
bitmap and placing the matching rule bitmap in the
equivalence set, otherwise, retrieving the equivalence-
set index value associated with the matching entry; and

associating the equivalence-set index value with the first-
level lookup table entry associated with the section
value.

2. The method of claim 1 wherein each section is the same
length.

3. The method of claim 1 wherein the step of creating
further comprises the steps of:

for each rule and each section value, determining if the

section value matches the rule; and

if so, setting a bit in the matching rule bitmap that

corresponds to the rule, otherwise, clearing the bit.

4. A method for classifying a network packet in accor-
dance with an access control list (ACL) containing one or

12

more rules using a hierarchy of lookup tables, the hierarchy
comprising a first level and one or more successive levels,
the method comprising the steps of:
dividing a packet header contained in the network packet
5 into a plurality of sections wherein each section is
associated with a section value;

applying each section value to a respective first-level
lookup table associated with the first level to generate
one or more first-level index values;

applying each first-level index value to a successive-level
lookup table associated with the successive level to
generate one or more successive-level index values;

determining if the successive-level index values indicate
that successive-level entries contained in the succes-
sive-level lookup tables and associated with the suc-
cessive-level index values are empty;

if so, building the successive-level entries; and

using at least one successive-level entry to classify the
network packet in accordance with the ACL.

5. The method of claim 4 further comprising the step of:

applying the first-level index values to the successive-
level lookup tables to generate a final-level table index
value.

6. The method of claim 5 wherein the step of using further

comprises the step of:

applying the final-level table index to a results table to
determine a first matching rule, from the one or more
rules, that is associated with the packet.

7. The method of claim 4 wherein the step of determining

further comprises the steps of:

concluding the successive-level entry is empty if the
successive-level index values are zero.

8. The method of claim 4 wherein the step of building

further comprises the steps of:

A) calculating the cross-product of a first equivalence-set
entry associated with a first lookup table associated
with a prior level and a second equivalence-set entry
associated with a second lookup table associated with
the prior level to generate a next-level-equivalence-set
index; and

B) associating the next-level-equivalence-set index with a
successive-level entry.

9. The method of claim 8 further comprising the step of:

repeating steps A and B for all levels in the lookup table
hierarchy.

10. An apparatus for classifying a network packet in
accordance with an access control list (ACL) containing one
or more rules, using a hierarchy of lookup tables, the
hierarchy comprising a first level and one or more succes-
sive levels, the apparatus comprising:

a processor configured to divide a packet header con-
tained in the network packet into a plurality of sections
wherein each section is associated with a section value,
apply each section value to a respective first-level
lookup table associated with the first level to generate
one or more first-level index values, apply each first-
level index value to a successive-level lookup table
associated with the successive level to generate one or
more successive-level index values, determine if the
successive-level index values indicate that successive-
level entries contained in the successive-level lookup
tables and associated with the successive-level index
values are empty and if so, build the successive-level
entries, and use at least one successive-level entry to
classify the network packet in accordance with the
ACL; and

20

35

40

45

50

55

60

65

US 7,236,493 Bl

13

a memory connected to the processor and configured to

hold the hierarchy of lookup tables.

11. The apparatus of claim 10 wherein the processor is
further configured to apply the first-level index values to the
successive-level lookup tables to generate a final-level table
index value.

12. The apparatus of claim 11 wherein the processor is
further configured to apply the final-level table index to a
results table to determine a first matching rule, from the one
or more rules, that is associated with the packet.

13. The apparatus of claim 10 wherein the processor is
further configured to conclude the successive-level entry is
empty if the successive-level index values are zero.

14. The apparatus of claim 10 wherein the processor is
further configured to calculate the cross-product of a first
equivalence-set entry associated with a first lookup table
associated with a prior level and a second equivalence-set
entry associated with a second lookup table associated with
the prior level to generate a next-level-equivalence-set
index; and associate the next-level-equivalence-set index
with a successive-level entry.

15. An apparatus for classifying a network packet in
accordance with an access control list (ACL) containing one
or more rules, using a hierarchy of lookup tables, the
hierarchy comprising a first level and one or more succes-
sive levels, comprising:

means for dividing a packet header contained in the

network packet into a plurality of sections wherein each
section is associated with a section value;

means for applying each section value to a respective

first-level lookup table associated with the first level to
generate one or more first-level index values;

means for applying each first-level index value to a

successive-level lookup table associated with the suc-
cessive level to generate one or more successive-level
index values;

means for determining if the successive-level index val-

ues indicate that successive-level entries contained in
the successive-level lookup tables and associated with
the successive-level index values are empty;

means for building the successive-level entries; and

means for using at least one successive-level entry to

classify the network packet in accordance with the
ACL.

16. The apparatus of claim 15 further comprising:

means for applying the first-level index values to the

successive-level lookup tables to generate a final-level
table index value.

17. The apparatus of claim 16 wherein the means for using
further comprise:

means for applying the final-level table index to a results

table to determine a first matching rule from the one or
more rules that is associated with the packet.

18. The apparatus of claim 15 further comprising:

means for calculating the cross-product of a first equiva-

lence-set entry associated with a first lookup table

5

10

20

25

30

45

50

55

14

associated with a prior level and a second equivalence-
set entry associated with a second lookup table asso-
ciated with the prior level to generate a next-level-
equivalence-set index; and

means for associating the next-level-equivalence-set
index with a successive-level entry.

19. A computer readable media comprising computer

executable instructions for execution in a processor for:

dividing a packet header contained in the network packet
into a plurality of sections wherein each section is
associated with a plurality of section values;

generating a first-level lookup table and equivalence set
associated with the first level in the hierarchy for each
of the sections wherein the equivalence set contains one
or more equivalence-set entries and wherein each
equivalence-set entry is associated with one or more
rules, and the first-level lookup table containing one or
more first-level lookup table entries wherein each first-
level lookup table entry associates each section value
with an equivalence-set entry;

allocating one or more successive-level lookup tables for
each successive level in the lookup table hierarchy
wherein each successive-level lookup table contains
one or more successive-level entries;

initializing the successive-level entries to indicate they are
missing;

creating a matching rule bitmap for each section value;

determining if the matching rule bitmap matches an entry
in the first-level equivalence set and, if not, assigning
an equivalence-set index value to the matching rule
bitmap and placing the matching rule bitmap in the
equivalence set, otherwise, retrieving the equivalence-
set index value associated with the matching entry; and

associating the equivalence-set index value with the first-
level lookup table entry associated with the section
value.

20. A computer readable media comprising computer

executable instructions for execution in a processor for:

dividing a packet header contained in a network packet
into a plurality of sections wherein each section is
associated with a section value;

applying each section value to a respective first-level
lookup table associated with the first level to generate
one or more first-level index values;

applying each first-level index value to a successive-level
lookup table associated with the successive level to
generate one or more successive-level index values;

determining if the successive-level index values indicate
that successive-level entries contained in the succes-
sive-level lookup tables and associated with the suc-
cessive-level index values are empty;

if so, building the successive-level entries; and

using at least one successive-level entry to classify the
network packet.

