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FLEXIBLE SOFTWARE-BASED PACKET
SWITCHING PATH

BACKGROUND OF THE INVENTION

A number of new technology initiatives, both in hardware
and software, are being planned to enhance routing architec-
tures, such as: 1) The introduction of multi-CPU processors;
2) The growing use of dedicated switching engines; 3) The
longer term migration to a software foundation that lends
itself to higher availability and a more structured software
environment.

Current software switching paths have many drawbacks
that prevent the utilization of these new technology initia-
tives. The switching path is tightly integrated inside the oper-
ating system (OS) and uses data structures and subroutine
calls to implement features, thus making it difficult to abstract
out the control plane. Also, new features (such as security or
QoS features) have to be explicitly integrated into the feature
path, causing performance or integration issues. Operating in
a distributed system (e.g., systems where switch processing is
performed on the line card instead of by the route processor)
requires considerable additional work, such as writing IPC
stubs. Further, this tightly integrated code is not suitable for
running in a tightly coupled symmetric multi-processor sys-
tem (SMP).

Additionally, current packet processing paths utilize run
time checks for testing whether certain features should be
applied to packets. This has several downsides such as per-
formance issues, difficulty of integrating new features, and
lack of modularity.

As result of the above considerations, it is clear that an
improved software switching path is required to be able to
take advantage of the new technology initiatives.

BRIEF SUMMARY OF THE INVENTION

In one embodiment of the invention, a switching architec-
ture abstracts the data plane from the control plane, includes
an API abstraction to the switching engines, and make good
use of new CPUs that implement SMP. The architecture is
consistent and provides pipeline of features so that the same
feature code can be reused in different paths and in either
central or distributed routing platforms.

In another embodiment of the invention, a software based
graph of feature nodes is created that can be connected
together to represent how packets are processed. The graph is
built according to a router’s configuration. Each node in the
graph contains private data that the node can use as feature
specific configuration data.

In another embodiment of the invention, packets are pro-
cessed by a packet context moving through the graph. Each
node may have multiple nodes connected to it for situations
where a different packet path is desired. For example, a
decoded MAC field of a packet may indicate different proto-
cols where each protocol can take a different path.

In another embodiment each node contains private con-
figuration data, so that many packet paths are possible, each
representing a different interface or possible path through the
router. The connections between each node are feature inde-
pendent, so that new features can be simply inserted in the
graph atany point. This also allows utility nodes to be inserted
e.g. for debugging, packet tracing, scheduling across multiple
CPUs etc.

Other features and advantages will be apparent in view of
the following detailed description and preferred embodi-
ments.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram depicting the separation of the
control and data planes in a preferred embodiment;

FIG. 2 is block diagram of the data plane;

FIG. 3 is a block diagram depicting an example of modular
switching paths;

FIG. 4 is a block diagram of a modular switching (MSW)
node;

FIG. 5 is flow chart depicting the processing of a packet in
an embodiment of the invention;

FIG. 6 is a block diagram depicting multiple instances
implemented on different linecards;

FIG. 71is ablock diagram depicting the instance interface to
the control plane;

FIG. 8 is a block diagram depicting the instance interface
for a remote and local instance;

FIG. 9 is a block diagram depicting proxy management
nodes and corresponding data plane nodes;

FIG. 10 is a block diagram of a proxy management node;

FIG. 11 is a block diagram depicting the layers for feature
configuration;

FIG. 12 is block diagram depicting the coupling of nodes in
the data plane;

FIG. 13 is a block diagram of a routing platform; and

FIG. 14 is a block diagram depicting the linecards con-
nected by a backplane.

DETAILED DESCRIPTION OF THE INVENTION

The invention will now be described with reference to
various embodiments implemented in a routing platform. In
the following, the term routing platform is utilized broadly to
include any component such a router, bridge, switch, layer 2
or layer 3 switch, gateway, etc., that refers to components
utilized to implement connectivity in a network.

Generally a routing platform includes a chassis, which
contains basic components such as a power supply, fans, slots,
ports and modules that slide into the slots. The modules
inserted into the slots are line cards which are the actual
printed circuit boards that handle packet ingress and egress.
Line cards provide one or more interfaces over which traffic
flows. Thus, depending on the number of slots and interfaces,
arouter can be configured to work with a variety of network-
ing protocols.

The basic function of a routing platform is routing, or
forwarding, which consists of the operation of transferring a
packet from an input interface to an output interface. The
routing, or forwarding, function comprises two interrelated
processes to move information in the network, i.e., making a
routing decision by routing and moving packets to the next-
hop destination by switching. Many routing platforms per-
form both routing and switching, and there are several types
of each.

Routing

The routing process assesses the source and destination of
traffic based on knowledge of network conditions. Routing
functions identify the best path to use for moving the traffic to
the destination out one or more of the router interfaces. The
routing decision is based upon a variety of criteria such as link
speed, topological distance, and protocol. Each separate pro-
tocol maintains its own routing information.

Switching

Through the switching process, the router determines the
next hop toward the destination address. Switching moves
traffic from an input interface to one or more output inter-
faces. Switching is optimized and has lower latency than
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routing because it can move packets, frames, or cells from
buffer to buffer with simpler determination of the source and
destination of the traffic. It saves resources because it does not
involve extra lookups.

In the switching process packets are received, for example,
on a Fast Ethernet interface and destined for an FDDI inter-
face. Based on information in the packet header and destina-
tion information stored in the routing table, the router deter-
mines the destination interface. It looks in the protocol’s
routing table to discover the destination interface that services
the destination address of the packet.

The destination address is stored in tables such as ARP
tables for IP and AARP table for AppleTalk. If there is no
entry for the destination, the router will either drop the packet
(and inform the user if the protocol provides that feature), or
it must discover the destination address by some other address
resolution process, such as through the ARP protocol. Layer
3 IP addressing information is mapped to the Layer 2 MAC
address for the next hop. FIG. 5 illustrates the mapping that
occurs to determine the next hop.

Distributed Switching

Switching becomes more efficient the closer to the inter-
face the function occurs. In distributed switching, the switch-
ing process occurs on a versatile interface processor (VIP)
and other interface cards that support switching.

Cisco Express Forwarding (CEF)

By using CEF, designed and manufactured by the assignee
of'the present patent application, each of the line cards main-
tains a Forwarding Information Base (FIB) table downloaded
from the switch processor. Any changes made to the route
processor routing table, caused by additions or deletions of
routes or route flaps, are updated in the central FIB, which in
turn updates the line card FIBs. This means that, at all times,
all line cards have a correct map of the network topology.

Features

CEF provides many features including load sharing, recur-
sive route resolution, and access lists. CEF uses two tables
maintained in the route processor and downloaded to the line
cards: the FIB and adjacency table. The FIB table is used for
making forwarding decisions. The adjacency table maintains
the adjacent nodes, and the link-layer information (such as
packet rewrite information) necessary to reach that adjacent
node.

These and other features are implemented by the switching
path. For example, security or policing features include
access control lists (ACLs) which restricts certain traffic from
gaining access to a network and Quality of Service (QoS)
features include Weighted Random Early Detection (WRED)
to prevent harmful effects of interface congestion on network
throughput and the Committed Access Rate The Committed
Access Rate (CAR) feature which manages bandwidth by
limiting the input or output transmission rate on an interface
or subinterface based on a flexible set of criteria.

As described above, in existing system interfaces are con-
figured using the OS and the software for switching and
implementing features is tightly coupled to the operating
system. An embodiment of the invention will now be
described by way of example, not limitation, in the context of
the internetworking operating system (IOS®) manufactured
and distributed by the assignee of the present patent applica-
tion. This embodiment includes control plane/data plane
separation and utilizes a flexible building block approach that
pipelines the software switching path to facilitate SMP, code
reusability, testing, and central or distributed operation.

FIG. 1 is a high-level block diagram of an embodiment of
the invention which depicts the separation of the data and
control planes 2 and 4. Network architectures have been
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partitioned into planes to handle the complexity of network-
ing processing. The data plane 4 in this embodiment performs
the functions of pulling packets into and pushing packets out
of'the routing platform as fast as possible. Switching, security
features, and QoS features are applied in this plane. The
control plane 2 manages the routing of the traffic that the
control plane is moving, allocates resources, and sets up and
tears down connections.

An overview of an embodiment of the invention will now
be provided with reference to FIG. 2 which is a diagram
depicting a data plane instance, FIG. 3 which is a block
diagram depicting a modular switching path and FIG. 4 which
is a diagram depicting the structure of a node.

Referring first to FIG. 2, the instance of the data plane 4
includes a control plane interface 20, at least one feature
graph 22, comprised of nodes, also called plugs, 24, local data
tables 26, and a platform interface and packet support block
28.

In this embodiment, as depicted in FIG. 3, the modular
switching (MSW) code includes first and second directed
graphs 22a and b configured on interconnected nodes 24. As
depicted in FIG. 4, each node 24 contains pointers 26 to other
nodes, a VET pointer 28 to a Virtual Function Table 30 con-
taining the code methods for the particular feature imple-
mented by the node, and an optional amount of node specific
configuration data 32. Also depicted in FIG. 4 is a packet
context 34 which is passed to each node as it processes a
packet.

These nodes 24 can be used as building blocks in creating
a graph of feature processing nodes 24 for a particular set of
features representing the configuration of an interface. Each
node 24 can contain specific configuration data, thereby
eliminating the need for the feature code to reference con-
figuration data in a separate data structure. The cost of each
node is low so that there can be a large number of nodes. The
nodes themselves consist of a base object which is then
extended by each feature code to contain the relevant con-
figuration for that feature.

Each node has a VFT pointer 28 pointing to a feature (VFT)
that defines a set of standard functions (methods) as an API
for the node. There can be many nodes that all point to the
same VFT, representing many instances of a single feature in
different packet pipelines.

The switching path is considered a graph rather than a
pipeline because potentially a feature could be involved in the
packet path in multiple places, especially when packet tunnel
(de)encapsulation is taking place. The switching graph con-
structed as a number of interconnected nodes replaces a
single software path that uses runtime branching to select the
appropriate features to apply to packets.

Implicit in the processing of the packet by each node is the
packet context 34, containing relevant information about the
packet. In this embodiment the packet context includes a
pointer to the location in memory where the packet is stored,
the size of the packet, the identity of the input interface, and
optionally, protocol specific fields such as, for IPv4, a pointer
to the IP header, a classification index, and flags. The packet
context may be used in conjunction with the configuration
data contained within the node to make decisions, such as
selection of the next node, concerning the processing of the
packet.

A node may also be pointed to by multiple nodes, and a
node may also have multiple nodes that it points to using the
packet data or context to select the appropriate next node.

The basic processing of a packet through a feature graph
will now be described. In routing platforms, a particular
packet is received at an input interface and stored in a buffer.
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The encapsulation is then decoded and the destination inter-
face of the packet is then determined either by a central route
processor or by an ASIC residing on a line card. The switch-
ing fabric then is used to transfer the packet to an output
interface. Security and QoS features may be applied either at
the input or output queues.

The processing of a packet by the nodes in the feature graph
will now be described with reference to flow chart depicted
FIG. 5 and the feature graph example of FIG. 3. When the
packetis received at the input interface it must be inserted into
the feature graph pipeline. In one embodiment, the driver for
the input interface utilizes a root node pointer that points to
the first node in the interface, in this example the encapsula-
tion/decoding node.

In this example, depending on the results of the decode, the
packet processing will be continued along either the first path
22a starting with the ACL (access control list) node or the
second path 225 starting with the PPPoE (point to point
protocol over Ethernet) node. Processing along either path
reaches a CEF (Cisco Express Forwarding Module) which, as
described above, does a table look up based on the packet’s
destination address to accesses the identity of the output
interface and the MAC address from the adjacency table.

In this embodiment, the selection of the next node can be
implemented as part of the CEF tables. For example, in the
CEF adjacency table a pointer to the next node can be
included in addition to the output interface and MAC. Thus, in
the example, the CEF node of the first path has only one
hard-coded node, i.e., the Fallback node. This is an example
of' how the next node in a chain may be obtained in a variety
of'ways, such as within the data portion of the node itself or in
external tables that the node functions can reference.

Thus, not shown in FIG. 3, are the many potential paths out
ofthe CEF nodes. These paths are represented in the first path
by the Queuing node. The paths terminating at the CEF node
form the configuration of the input interface and features
implemented after CEF node form the configuration of the
output interface.

The termination node in this example of FIG. 3 is either a
Fallback node or a Queuing node. Fallback nodes will be
described more fully below. Assuming the packet terminates
at the Queuing node the output interface driver will remove
the packet from memory and transmit it on the network
media.

As apacketis processed through the graph, it progresses by
traversing the appropriate nodes and having that node’s fea-
ture processing applied to it. Certain nodes may select differ-
ent paths for the packet so that the path becomes context
dependant on the packet, avoiding unconfigured features, e.g.
if an input interface does not have any ACLs configured on it,
no ACL feature node will exist in that packet path.

Ultimately, as described above, the packet will arrive at
some terminating node, such as an output interface, or a drop
or Fallback node, where the packet processing completes.
Drop and fallback adjacencies are used to expedite switching
when certain exception conditions exist. A Fallback causes
packets to be forwarded to the next switching layer for han-
dling when features that require special handling or features
that are not yet supported in conjunction with CEF switching
paths are processed. A drop causes a packet to be dropped.

Nodes can also decide to forward a packet to the control
plane for special processing, such as when some control
operation needs to take place, or some information is required
before the packet can be further processed. This is called a
‘punt’ to the control plane. The control plane is provided with
the identification of the node from where the packet has been
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6

forwarded (as well as an indication of the cause of the punt),
and a control plane method specific to that type of node is
invoked.

The control plane, upon receiving this packet, can perform
the appropriate operations required and can then decide to
either drop the packet, send itto a fallback path, or reinsert the
packet back into the modular switching data plane. The node
at which it is reinserted is normally the node from which it
came, under the assumption that the interrupted processing
can be repeated, but the control plane can forward it to any
other node that is appropriate. As an example, if the CEF
forwarding node identified the next hop for the packet as
being via an Ethernet network, but the media layer address is
not known, the CEF node can punt the packet to the control
plane, and the control plane CEF processing will cause the
appropriate ARP actions to be take place, and once the media
address information is known, the delayed packet can be
reinserted into the data plane for forwarding.

Control Plane Interface

As described above, one of the structural problems with
existing switching paths is that the switching code is tightly
integrated with OS data structures making it difficult to
abstract out the control plane. In modular switching path
depicted in FIG. 3, each node includes configuration data
eliminating the need to reference data structures in the OS.
There are significant advantages to distilling out the data
plane from the control plane, some immediate and others that
are longer term, such as the ability to reuse the data plane
(switching module) in future OS replacement systems. One of
the more significant advantages is that the switching engine
can be upgraded or replaced without significant impact to the
control plane.

Generally, the control plane software is responsible for
setting up tables for the data plane, communicating informa-
tion between neighboring devices, keep alives, and other
signaling and routing protocols.

The data plane which, in this embodiment is implemented
as the directed graph of nodes described above and depicted
in FIG. 3, is responsible for switching functions including
switching of packets, security, and quality of service.

FIG. 1 is a block diagram depicting the layering of the OS
and modular switching control planes and their interfaces.

FIG. 6 depicts how a single control plane may be required
to manage multiple line cards or switching engines; to facili-
tate this, each separate entity that runs MSW is known as an
MSW instance 50. In this embodiment, each instance 50
incorporates a separate packet switching domain. The natural
boundaries of these domains implies that:

Nodes cannot be connected across domains. To deal with
architectural issues such as inter-linecard packet han-
dling, it is possible that nodes representing domain
boundaries can be implemented that act as bridges
between domains.

Node identification and management is specific to each
instance. Within a complete system, nodes may be glo-
bally identified only together by the node ID and the
instance it belongs to.

Nodes only have local scope within its own domain i.e. a
node cannot access nodes in other domains.

Different instances may have a different platform specific
method of interconnection with the control plane, e.g.,
within a distributed system, one domain may exist as a
local instance as part of the control plane system, and
another domain may exist on a linecard accessed via
backplane IPC.

Instances may be viewed as separately loadable sub-
systems.
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When the control plane creates and manages nodes, it does

so within the context of a particular instance.

MSW itself contains an instance management layer 52
designed to interface with the control plane side MSW man-
agement software. This instance management layer 52 acts as
a proxy for the control plane, both for common code and for
feature specific support. For example, this code would pro-
vide memory management for MSW nodes (allocation/dele-
tion of nodes), mapping of node IDs to the actual nodes, etc.

For example, in a system as depicted in FIG. 6 which
utilizes distributed switching, such as CEF described above,
an instance of MSW would be present on each linecard 54. In
this case, packets could be sourced or sinked either by the
network interfaces, located on the linecard and connected to
network media, or to the backplane. If, after a CEF table
lookup, it is determined that a packet is to be sinked on an
interface of another line card, having another instance of
MSW implemented thereon, a half node on the instance of the
first line card, utilizing the platform interface and packet
support block 28 (FIG. 2) on that linecard, would sink the
packet onto the backplane and a half node on the instance of
the second linecard, utilizing the platform interface and
packet support block 28 (FIG. 2) on the second linecard,
would source the packet.

As depicted in FIG. 7, the control plane interface between
the IOS® operating system (or any other OS) uses an OS and
platform dependant instance management layer 52 to isolate
the details of the actual communication method between the
control plane and MSW feature graph. As depicted in FIG. 8
on a local instance, this communication method may simply
utilize function calls. On a remote instance, in a distributed
system, the communication method may utilize an IPC mes-
saging layer.

This MSW instance management layer 52 is designed to
interface with the control plane side MSW management soft-
ware. This layer 52 acts as a proxy for the control plane, both
for common code and for feature specific support. For
example, this code would provide memory management for
MSW nodes (allocation/deletion of nodes), mapping of node
IDs to the actual nodes, etc.

The instance contains the access methods for the nodes on
that domain, so that when the control plane creates and man-
ages nodes the calls are vectored through an instance VFT 62
that will provide the appropriate interface for accessing that
domain, e.g., function calls to a local instance, message mar-
shalling and IPC to a linecard, etc. The instance also contains
the method for allocating node identifiers, since each instance
has a separate set of node identifiers.

Node Management

In this embodiment, the level of management within the
MSW module itself is very minimal, and a control plane
management module exists that performs the bulk of the
management of the nodes such as deciding the graph layout
according to the router configuration, creation and deletion of
nodes, etc.

The nodes comprising the feature graph are determined by
the configuration of the interface. In the IOS® operating
system interfaces can be configured by the network adminis-
trator.

Nodes within an MSW instance are identified with a simple
integer node ID. The control plane side management allocates
these values, and when requesting creation of nodes within
MSW, provides the node ID so that MSW can bind this node
to this ID. The control plane manager keeps track of node
usage so that nodes can be destroyed when no longer in use.
As depicted in FIG. 9, the control plane manager keeps a
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proxy set of management objects that represents each node
within MSW itself. These proxy nodes are depicted in FIG. 10
and contain:
A pointer to the instance that this node belongs to.
The node identifier.
A set of flags describing attributes of this node.
Node graph pointers to the predecessors and successors of
the node.
Node specific data that can be used within the node to
configure or control the data plane portion of the node.
A pointer to a VFT containing some methods for this node.

The entries that are defined for the control plane’s proxy node
are:

*new—create and initialize a new instance of this node
type. This should trigger a create of a node within the
data plane as well.

*download—if an instance has to be reinitialized (e.g. as a
result of a line card reload), this method is called to
download the current configuration of this node.

*destroy—called when this node is no longer required.
This method should free the node.

*forwarding_addr—when a node is removed, it provides a
forwarding address of another node (usually one of the
downstream nodes) so that the nodes that point to the
node being removed can be informed of an alternative
node to connect to.

*disconnect—A node that this node points to is being
removed, so the link to that node has to be removed. An
alternative node is offered as a replacement.

*command—actions being driven from the control plane
such as configuration commands, node connection etc.,
are performed through this vector.

*putn-a packet has been punted from the data plane, and
this function should decode the cause, and perform
whatever control actions are required by the data plane.
The control code can then drop the packet, reinsert it
back into the data plane, or otherwise dispose of the
packet.

A set of utility functions exist that the control plane code
can call to control the linking and management of the difter-
ent proxy nodes.

Node Structure

In this embodiment the base data structure of the node
appears as follows:

struct plug {

struct plug_vft *vft;

struct plug_vft {

void (*jump) (struct plug *, struct packet *);

struct plug *(*new) (void);

void (*config)(struct plug *, int, int *);

void (*destroy)(struct plug *);

char *name;

Each node (plug) class (or feature) defines a VFT pointing
to the feature specific methods for this plug type, and also a
data structure defining the feature specific data to be stored in
the plug itself. For example, ifan access list plug class were to
be defined the VFT entries for this example would appear as
follows:

static void acl_lookup(struct plug *, struct packet *)

static struct plug *new_acl_node(void);

static void acl_config(struct plug *, int, int *)

static struct plug_vft acl_node = {

acl_lookup,

new_acl_node,

acl_config,
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acl_destroy,

“ACL”

b

VFT Entries

The plug VFT entries are used for plug specific functions
where management code calls these vectors to create or con-
figure each node, and packet path code to pass a packet to the
node. The following entries are defined:

jump Used to pass control from one node to another. This
function is called as: void xxx_jump (struct plug *p, struct
packet *pkt). The first parameter is a pointer to the node that
this vector belongs to. Typically, the node would be invoked
via an inline that is provided a pointer to the next node as the
parameter. This inline would fetch the jump vector via the
node’s VFT and then call it, using the node address as the
parameter. The second parameter is the packet context.

new The new VFT entry is a constructor for this type of
node. When called, it should allocate an instance of this type
of node, initialize the node to sane values, install the VFT
pointer etc. The address of the new node is returned, or NULL
if some error occurred that prevented creation of the node.

config The config vector provides an abstracted configura-
tion entry point for this particular node (see below for more
details).

destroy The destructor for this node. Cleans up all
resources attached to the node, and frees the node itself.

name Provides a terminating name string for the VFT.

Node Configuration

Each node within MSW contains configuration data passed
down from the control plane. This configuration contains data
specific to the feature such as data table references, interface
or feature specific details (e.g. for an ACL node, which ACL
should be applied to the packet), and node connection details
(e.g. which node should the packet be passed onto).

In this embodiment, the interface to the node’s configura-
tion is via the VFT config entry, called: void config (struct
plug *p, int argc, int argv]| |). The first parameter indicates the
node to be configured, and the configuration data is passed as
anargc/argy pair, allowing variable length data to be passed to
the node.

As depicted in FIG. 11, typically, the feature’s control
plane side would invoke the configuration using a variable
number of arguments (with perhaps the first argument being
a particular configuration command); the control plane inter-
face software would marshal the values into an array to be
passed across to the node (in a distributed system, the argu-
ments would be marshaled into an IPC packet, and then
unpacked at the distributed node).

All resource references passed to the node configuration
need to be non-system specific, i.e., no memory addresses can
be passed across to MSW, because possibly the module
resides in a separate address space. References such as to
other nodes need to be done via the node ID.

Referring now to FIG. 12, as an example, if a user config-
ures an interface to include a feature X and Y then the follow-
ing steps are implemented by a graph constructor 70 in the
control plane. Feature nodes X and Y are configured as
described above with proxy nodes formed in the control plane
and corresponding switching nodes formed in the data planes.
The graph constructor 72 then connects nodes X and Y so that
both features are included in the switching path of the inter-
face.

When the control plane connects the node into a graph, a
configuration command is passed containing an appropriate
command, as well as a node 1D indicating the node it is to be
connected to (i.e. the node being configured would have a
pointer to the next node in the graph—the configuration com-
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mand would map the node ID to the next node, and store this
pointer as part of the node data).

Other MSW resources such as bulk data table references,
interface tables etc., would also need abstracted reference IDs
to avoid the use of pointers as configuration data. Existing
systems use identification such as interface number etc.

Tracing and Debugging

One of the advantages of the flexible chain arrangement,
described above, is that new nodes can be inserted invisibly
into an existing chain. This can help greatly in debugging by
selectively adding nodes that perform packet tracing or
dumping. One problem being experienced in current switch-
ing code is that adding debugging or tracing can significantly
impact performance because runtime checks are added
regardless of whether tracing is required or not. Witha MSW
node chain, there is no inherent cost of debugging or tracing
if it is not configured. Packet tracing nodes can be added at
any stage of the chain (or at multiple points) without impact-
ing the normal switching performance by simply inserting the
appropriate debugging nodes. This would allow a greater
granularity of packet tracing or debugging at any stage in the
feature path without having to suffer the overhead if it wasn’t
enabled.

Routing Platform

FIG. 13 depicts a routing platform 59 on which the above
described embodiments can be implemented. The routing
platform includes two routing processors (Active and
Standby) 60 and 62 coupled to a plurality of linecards 66 by
a bus.

Modern routers are highly modular and include a chassis
having multiple slots for inserting cards 66 to perform
selected functions. Line cards connect the router to other
devices via electrical or optical media. The switch fabric, in
this embodiment, includes switch-fabric cards and scheduler
cards.

The active route processor 62 maintains routing tables. In
some routers switching is performed centrally by the route
processor 62 and other routers implement distributed switch-
ing where switching is performed by the linecards 66 using
tables updated by the route processor 62.

FIG. 14 depicts the linecards 66 connected to a backplane
74 by serial links 76. In this embodiment, the crossbar
includes crossbar switches in the form of ASICs coupledto a
backplane formed of multiple serial links. Incoming packets
are buffered on the egress linecard, the route of the packet is
the determined, and the crossbar is utilized to transfer the
packet to an output buffer on the egress linecard.

CONCLUSION

The invention may be implemented as program code,
stored on a computer readable medium, that is executed by a
digital processor. The computer readable medium may
include, among other things, magnetic media, optical media,
electro-magnetic fields encoding digital information, and so
on.

The invention has now been described with reference to the
preferred embodiments. Alternatives and substitutions will
now be apparent to persons of ordinary skill in the art. For
example, the features described are implemented in the [OS®
operating system but the invention is generally applicable to
features which are implemented in the switching path. Addi-
tionally, different techniques for marshalling arguments and
passing arguments to remote instances can be utilized.
Accordingly, it is not intended to limit the invention except as
provided by the appended claims.
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What is claimed is:

1. A system comprising:

a data plane instance configured to utilize a plurality of
interconnected feature nodes, forming a software-based
graph, to switch and apply features to packets, with the
each feature node in the graph containing private feature
specific configuration data and feature specific code, and
with multiplexing nodes in the software-based graph
including pointers utilized to switch a packet to a
selected one of multiple nodes connected to the multi-
plexing node depending on a packet context including a
pointer to a location in memory where the packet is
stored, packet size, and identity of the packet’s input
interface;

a control plane management module configured to allocate
ID values and bind a feature node in the data plane
instance to an ID value that identifies the feature node in
the data plane instance and with control plane manage-
ment module configured to maintain a proxy node that
represent the feature node in the data plane, with the
proxy node including a pointer to the data plane instance
and the ID; and

a control plane interface configured to isolate details of
actual communication between the control plane man-
agement module and the software-based graph.

2. The system of claim 1 where the graph further com-

prises:

terminating nodes for either dropping, punting, or forward-
ing a packet.

3. The system of claim 2 where a feature node further

comprises:

a pointer to a virtual function table that contains methods
for the feature node.

4. The system of claim 2 where the terminating node for
forwarding a packet includes a platform interface and sinks
the packet onto a router platform backplane.

5. The system of claim 1 where the software-based graph
further comprises:

input nodes for receiving a packet from an input interface.

6. The system of claim 5 where the input node includes a
platform interface and sources the packet from a router plat-
form backplane.

7. The system of claim 1 implemented on a routing plat-
form having a plurality of linecards and using distributed
processing, where:

a data plane includes a plurality of data plane instances,
with one data plane instance present on each linecard in
the plurality, and with feature nodes in a data plane
instance unable to access nodes in other data plane
instances, and each feature node in a data plane instance
identified by a node ID and the instance to which it
belongs.

8. The system of claim 7 with the data plane instance

further configured to:

provide appropriate interfaces for nodes in the data plane
instance.

9. The system of claim 8 with the data plane instance

further configured to:

utilize function calls for a local data plane instance in the
same processor domain as the control plane manage-
ment module; and

utilize interprocess communication (IPC) methods for
remote data plane instances on linecards.

10. The system of claim 1 with the control plane manage-

ment module further configured to:

pass configuration data to a feature node in the data plane
instance.
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11. The system of claim 1 where the proxy node further
includes:
flags describing attributes of the feature node and node
graph pointers pointing to predecessors and successors
of the feature node.
12. The system of claim 1 where the control plane man-
agement module is configured to:
build proxy nodes corresponding to feature nodes in the
data plane; and
add, delete, configure, and connect proxy nodes and cor-
responding feature nodes.
13. A method comprising:
creating a first feature node in a data plane to implement
part of a first feature software-based graph that switches
and applies features to packets;
configuring the first feature node with private data, feature
code, a pointer, and methods required to implement the
first feature;
creating a second feature node in the data plane to imple-
ment a second feature in the software-based graph;
configuring the second node with local data, feature code,
and methods required to implement the second feature
with the pointer of the first feature node configured to
point to the second feature node to connect the first and
second feature nodes so that the first feature is imple-
mented by the first feature node and the second feature is
implemented by the second feature node;
creating a first packet context for a first packet to be
switched;
inserting the first packet context into the first feature node;
processing the first packet utilizing feature code and pri-
vate data of the first feature node;
jumping to a next feature node based on the first packet
context; and
processing the first packet utilizing feature code and pri-
vate data of the next feature node
creating a first proxy node at a control plane;
configuring the first proxy node to contain a set of flags
describing attributes of the first feature node and to
contain node specific data;
creating a second proxy node at a control plane; and
configuring the second proxy node to contain a set of flags
describing attributes of the second feature node and to
contain node specific data.
14. The method of claim 13 where configuring the second
proxy node includes the step of:
including pointers in the first proxy node to all predecessor
and successor nodes to the first feature node.
15. The method of claim 13 further comprising:
creating a plurality of instances with a first instance includ-
ing the first and second feature nodes;
isolating feature nodes in each instance from feature nodes
in other instances; and
providing access methods in each instance that provide
appropriate interfaces of nodes in the instance.
16. The method of claim 15, where if an instance is a
remote instance, providing access methods includes:
providing interprocess communication (IPC) methods.
17. A system comprising:
means for creating a first feature node in a data plane to
implement part of a first feature software-based graph
that switches and applies features to packets;
means for configuring the first feature node with private
data, feature code, a pointer, and methods required to
implement the first feature;
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means for creating a second feature node in the data plane
to implement a second feature in the software-based
graph;

means for configuring the second node with local data,
feature code, and methods required to implement the
second feature, with the pointer of the first feature node
configured to point to the second feature node to connect
the first and second feature nodes so that the first feature
is implemented by the first feature node and the second
feature is implemented by the second feature node;

means for creating a first packet context for a first packet to
be switched;

means for inserting the first packet context into the first
feature node;

means for processing the first packet utilizing feature code
and private data of the first feature node;

means for jumping to a next feature node based on the first
packet context; and

means for processing the first packet utilizing feature code
and private data of the next feature node

means for creating a first proxy node at a control plane;

means for configuring the first proxy node to contain a set
of flags describing attributes of the first feature node and
to contain node specific data;

14

means for creating a second proxy node at a control plane;
and

means for configuring the second proxy node to contain a
set of flags describing attributes of the second feature
node and to contain node specific data.

18. The method of claim 17 where the means for configur-

ing the second proxy node includes:

means for including pointers in the first proxy node to all
predecessor and successor feature nodes to the first fea-
ture node.

19. The system of claim 17 further comprising:

means for creating a plurality of instances with a first
instance including the first and second feature nodes;

means for isolating feature nodes in each instance from
feature nodes in other instances; and

means for providing access methods in each instance that
provide appropriate interfaces of nodes in the instance.

20. The system of claim 19 where if an instance is a remote

5o instance, said means for providing access methods includes:

means for providing interprocess communication (IPC)
methods.



